精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和,数列是正项等比数列,且.

1)求数列的通项公式;

2)记,是否存在正整数,使得对一切,都有成立?若存在,求出M的最小值;若不存在,请说明理由.

【答案】1M的最小值为2.

【解析】

1)当时,,当时,利用得到的通项公式,把代入也满足,得到即可;因为数列是各项为正的等比数列,根据题意即可利用等比数列的通项公式得到的通项;(2)把的通项公式代入到中,可确定最大,即可得到结论.

1)∵数列的前项和

时,

时,,满足上式,

∴数列的通项公式为

∵数列是正项等比数列,

.

∴数列的通项公式为

2)∵,∴

,可得,当时,

最大,最大值为

故存在正整数M,使得对一切,都有成立,M的最小值为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体,直角三角形也可以推广到直角四面体,如果四面体中棱两两垂直,那么称四面体为直角四面体. 请类比直角三角形中的性质给出2个直角四面体中的性质,并给出证明.(请在结论中选择1个,结论4,5中选择1个,写出它们在直角四面体中的类似结论,并给出证明,多选不得分,其中表示斜边上的高,分别表示内切圆与外接圆的半径)

直角三角形

直角四面体

条件

结论1

结论2

结论3

结论4

结论5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)已知集合A={x|-2<x<0},B={x|y=}

(1)求(RA)∩B;

(2)若集合C={x|a<x<2a+1}且CA,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, ,点的中点,点上一动点.

1)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由.

2)若点的中点且,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为:.

(1)若曲线的参数方程为为参数),求曲线的直角坐标方程和曲线的普通方程;

(2)若曲线的参数方程为为参数),,且曲线与曲线的交点分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数是偶函数,设

(1)求的解析式;

(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;

(3)若方程有三个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;

(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了全面贯彻党的教育方针,坚持以人文本、德育为先,全面推进素质教育,让学生接触自然,了解社会,拓宽视野,丰富知识,提高社会实践能力和综合素质,减轻学生过重负担,培养学生兴趣爱好,丰富学生的课余生活,使广大学生在社会实践中,提高创新精神和实践能力,树立学生社会责任感,因此学校鼓励学生利用课余时间参加社会活动实践。寒假归来,某校高三(2)班班主任收集了所有学生参加社会活动信息,整理出如图所示的图。

1)求高三(2)班同学人均参加社会活动的次数;

2)求班上的小明同学仅参加1次社会活动的概率;

3)用分层抽样的方法从班上参加活动2次及以上

的同学中抽取一个容量为5的样本,从这5人中任选3人,其中仅有两人参加2次活动的概率。.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的各项均为正数,且的前项和是.

(1)若是递增数列,求的取值范围;

(2)若,且对任意,都有,证明: .

查看答案和解析>>

同步练习册答案