【题目】已知:,
(1)当时,恒有,求的取值范围;
(2)①当时,恰有成立,求的值.
②当时,恒有,求的取值范围;
【答案】(1);(2)①a=3,m=6②.
【解析】
(1)考虑f(x)是否为二次函数,首先要进行分类讨论,若f(x)为二次函数则由图像分布的位置可知,f(x)开口向下且与x轴无交点.
(2)①构造一个新函数g(x)=f(x)-mx+7,这样问题转化为二次函数问题.
②对于二次函数在区间上的恒成立问题只需要考虑将f(x)的最大值小于零.
(1)当a=2时,f(x)=-4<0满足;
当a≠2时, 解得-2<x<2
综上,a的取值范围为
(2)①∵f(x)<mx-7,∴f(x)-mx+7<0,即(a-2)x2+(2a-4-m)x+3<0,
令g(x)=(a-2)x2+(2a-4-m)x+3<0,∵x∈(1,3)时,恰有f(x)<mx-7成立
所以1,3为方程g(x)=0的根,由韦达定理知:1+3= ;1×3=
解得a=3,m=6
②由(1)得a=2,成立,当a≠2,对称轴x=-1
或 解得: 或
综上,a的取值范围为
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(1)证明:CD⊥平面PAE;
(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P﹣ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全。已知该班学生投篮成绩的中位数是5,则根据统计图,则下列说法错误的是( )
A. 3球以下(含3球)的人数为10
B. 4球以下(含4球)的人数为17
C. 5球以下(含5球)的人数无法确定
D. 5球的人数和6球的人数一样多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为和,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(﹣1,4)及圆C:(x﹣2)2+(y﹣3)2=1.则下列判断正确的序号为 .
①点P在圆C内部;
②过点P做直线l,若l将圆C平分,则l的方程为x+3y﹣11=0;
③过点P做直线l与圆C相切,则l的方程为y﹣4=0或3x+4y﹣13=0;
④一束光线从点P出发,经x轴反射到圆C上的最短路程为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人用擂台赛形式进行训练.每局两人单打比赛,另一人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打局,乙共打局,而丙共当裁判局.那么整个比赛的第局的输方( )
A. 必是甲 B. 必是乙 C. 必是丙 D. 不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
(1)若α⊥γ,β⊥γ,则α//β;
(2)若mα,nα, , 则α//β;
(3)若α//β,lα,则l//β;
(4)若 , l//γ,则m//n.
其中正确的命题是( )
A.(1)(3)
B.(2)(3)
C.(2)(4)
D.(3)(4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com