精英家教网 > 高中数学 > 题目详情
已知AB是异面直线a,b的公垂线段,AB=2,且a与b成30°角,在直线a上取AP=4,则点P到直线B的距离为( )
A.2
B.4
C.2
D.
【答案】分析:过点B作直线BM∥a,过点P作MP⊥BM,过点M作MN⊥BN,连接PN,根据线面关系得到BN⊥平面PMN,即得到PN为点P到直线b的距离,再根据线段的长度关系利用解三角形的有关知识求出答案.
解答:解:过点B作直线BM∥a,过点P作MP⊥BM,过点M作MN⊥BN,连接PN,如图所示:

由以上可得:AB∥PM,AB=PM,所以AP=BM.
所以PM⊥平面BNM,
所以BN⊥MN,BN⊥PM,
所以BN⊥平面PMN,可得BN⊥PN,所以PN为点P到直线b的距离.
因为AP=4,所以BM=4.
因为∠MBN=30°,所以MN=2,
又因为PM=2,所以PN=2
故选A.
点评:本题主要考查异面直线上两点的距离问题,解决此类问题的关键是画出图象,再利用空间中的线面关系与解三角形的有关知识求解即可,此题属于中档题,对学生的空间想象能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知AB是异面直线a、b的公垂线段,AB=2,且a与b成30°角,在直线a上取AP=4,则点P到直线b的距离为
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB是异面直线a,b的公垂线段且A∈a,B∈b,AB=2,a与b成30°角,在a上取一点P,?¹AP=4,则P到b的距离等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB是异面直线a,b的公垂线段,AB=2,且a与b成30°角,在直线a上取AP=4,则点P到直线B的距离为(  )
A、2
2
B、4
C、2
14
D、2
2
或2
14

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知AB是异面直线a,b的公垂线段,AB=2,且a与b成30°角,在直线a上取AP=4,则点P到直线B的距离为(  )
A.2
2
B.4C.2
14
D.2
2
或2
14

查看答案和解析>>

同步练习册答案