精英家教网 > 高中数学 > 题目详情
1.设抛物线y2=8x上有两点A,B,其焦点为F,满足$\overrightarrow{AF}$=2$\overrightarrow{FB}$,则|AB|=9.

分析 由于$\overrightarrow{AF}$=2$\overrightarrow{FB}$,可得直线经过焦点F(2,0).设A(x1,y1),B(x2,y2)(x1>x2).设直线AB的方程为:
y=k(x-2).与抛物线的方程联立可得根与系数的关系,再利用向量的坐标运算、焦点弦长公式即可得出.

解答 解:∵$\overrightarrow{AF}$=2$\overrightarrow{FB}$,∴直线经过焦点F(2,0),
设A(x1,y1),B(x2,y2)(x1>x2).
设直线AB的方程为:y=k(x-2).
与抛物线方程联立,化为k2x2-(4k2+8)x+4k2=0,
则x1+x2=$\frac{4{k}^{2}+8}{{k}^{2}}$,x1x2=4.
∵$\overrightarrow{AF}$=2$\overrightarrow{FB}$,∴x1-2+2(x2-2)=0,
∴x1+2x2=6,解得x1=4,x2=1,k2=8.
∴|AB|=x1+x2+p=5+4=9.
故答案为:9.

点评 本题考查了直线与抛物线相交转化为方程联立可得根与系数的关系、向量的坐标运算、焦点弦长公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年湖南益阳市高二9月月考数学(理)试卷(解析版) 题型:选择题

若不等式对任意实数x均成立,则实数a的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知角α的终边经过点P(-6m,8m)(m<0),则2sinα+cosα的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.
(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;
(2)如果放养x天后将活蟹一次性出售,并记1000kg蟹的销售总额为Q元,写出Q关于x的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额-放养支出的各种费用)?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点P(3,0)有一条直线l,它夹在两条直线l1:2x-y-2=0与l2:x+y+3=0之间的线段恰被点P平分,则直线l方程为(  )
A.6x-y-18=0B.8x-y-24=0C.5x-2y-15=0D.8x-3y-24=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)化简$\root{3}{{a}^{\frac{9}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-7}}}$•$\root{3}{{a}^{13}}$;
(2)解不等式ax+5<a4x-1(a>0,且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,某小区有一矩形地块OABC,其中OC=2,OA=3,单位:百米.已知 O EF是一个游泳池,计划在地块OABC内修一条与池边 EF相切于点 M的直路l(宽度不计),交线段OC于点D,交线段OA于点 N.现以点 O为坐标原点,以线段 OC所在直线为x轴,建立平面直角坐标系,若池边 EF满足函数y=-x2+2($0≤x≤\sqrt{2}$)的图象.若点 M到y轴距离记为t.
(1)当$t=\frac{2}{3}$时,求直路l所在的直线方程;
(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值时多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次方程mx2+(2m-1)x-m+2=0的两个根都在区间[-2,2]内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于在区间[m,n]上有意义的两个函数f(x)和g(x),如果对于任意的x∈[m,n],都有|f(x)-g(x)|≤1恒成立,则称f(x)与g(x)在区间[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的,现有函数f1(x)=loga(x-3a),f2(x)=loga$\frac{1}{x-a}$(a>0,a≠1)给定一个区间[a+2,a+3].
(1)当a=$\frac{1}{2}$时,判断f1(x)与f2((x)在区间[a+2,a+3]上是否是接近的,并说明理由;
(2)若f1(x)与f2(x)在区间[a+2,a+3]上是接近的,求实数a的取值范围.

查看答案和解析>>

同步练习册答案