精英家教网 > 高中数学 > 题目详情

【题目】已知a,b,c分别为△ABC内角A,B,C的对边,
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC边AC上的高h=b,求 的值.

【答案】解:(Ⅰ)由 . 根据正弦定理,可得:
即a﹣bcosC=csinB,
得:sinA﹣sinBcosC=sinCsinB.
B+C+A=π
∴sinA=sin(B+C)
∴sinBcosC+sinCcosB﹣sinBcosC=sinCsinB.
可得:sinCcosB=sinCsinB.
∵0<C<π,sinC≠0.
∴cosB=sinB
∵0<B<π.
∴B=
(Ⅱ)由题意,过B点作AC的高h=DB=b.设AD=m,DC=n,n+m=b.
则tanA= ,tanC=
可得 =sinB( )=sinB=

【解析】(Ⅰ)运用正弦定理结合三角形的内角和定理.即可得到A.(Ⅱ)根据△ABC边AC上的高h=b,求出tanA和tanC,带入化简可得答案.
【考点精析】关于本题考查的正弦定理的定义,需要了解正弦定理:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设复数z1=(a2-4sin2θ)+(1+2cos θ)i,aR,θ(0,π),z2在复平面内对应的点在第一象限,且z=-3+4i.

(1)z2|z2|.

(2)z1z2,求θa2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中社团进行社会实践,对岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:

完成以下问题:

(Ⅰ)补全频率分布直方图并求的值;

(Ⅱ)从岁年龄段的“时尚族”中采用分层抽样法抽取人参加网络时尚达人大赛,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)=a+ (a,b∈R)有最大值和最小值,且最大值与最小值之和为6,则3a﹣2b=(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,左右焦点分别为F1 , F2 , 以椭圆短轴为直径的圆与直线 相切.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点F1、斜率为k1的直线l1与椭圆E交于A,B两点,过点F2、斜率为k2的直线l2与椭圆E交于C,D两点,且直线l1 , l2相交于点P,若直线OA,OB,OC,OD的斜率kOA , kOB , kOC , kOD满足kOA+kOB=kOC+kOD , 求证:动点P在定椭圆上,并求出此椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2-ln x,a∈R.

(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程.

(2)讨论f(x)的单调性.

(3)是否存在a,使得方程f(x)=2有两个不等的实数根?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先阅读下列题目的证法,再解决后面的问题.

已知a1,a2∈R,且a1+a2=1,求证:a+a.

证明:构造函数f(x)=(x-a1)2+(x-a2)2,则f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因为对一切x∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,从而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请由上述结论写出关于a1,a2,…,an的推广式;

(2)参考上述证法,请对你推广的结论加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在圆心角为90°的扇形AOB中,以圆心O作为起点作射线OC,OD,则使∠AOC+∠BOD<45°的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(﹣2,m), = +(t2+1) =﹣k + ,m∈R,k、t为正实数.
(1)若 ,求m的值;
(2)若 ,求m的值;
(3)当m=1时,若 ,求k的最小值.

查看答案和解析>>

同步练习册答案