精英家教网 > 高中数学 > 题目详情
4.某公司从1999年的年产值100万元,增加到10年后2009年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)

分析 设每年的年产值增长率是x,由题意可得:100(1+x)10=500,化为10ln(1+x)=ln5,即可得出40x=ln5,解出即可得出

解答 解:设每年的年产值增长率是x,
由题意可得:100(1+x)10=500,
化为10ln(1+x)=ln5,
∴10x≈ln5,
∴x=$\frac{ln5}{10}$=$\frac{ln10-ln2}{10}$≈0.2=20%.
答:每年的年产值增长率约是20%

点评 本题属于求增长率(下降率)的模型题,应明确增长的基数,增长的次数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x-a|+|x-3|(a<3).
(1)若不等式f(x)≥4的解集为{x|x≤$\frac{1}{2}$或x$≥\frac{9}{2}$},求a的值;
(2)若对?x∈R,f(x)+|x-3|≥1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:f(x)=$\frac{1}{{\sqrt{a{x^2}-ax+1}}}$的定义域为R;命题q:不等式3x-9x<a-1对一切正实数x均成立.
(1)如果命题p是真命题,求实数a的取值范围;
(2)如果命题p且q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$是二元一次方程组$\left\{\begin{array}{l}{ax+by=1}\\{bx+ay=2}\end{array}\right.$的解,那么a,b的值是(  )
A.$\left\{\begin{array}{l}{a=-1}\\{b=0}\end{array}\right.$B.$\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$C.$\left\{\begin{array}{l}{a=0}\\{b=1}\end{array}\right.$D.$\left\{\begin{array}{l}{a=0}\\{b=-1}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知R上的可导函数f(x)的图象如图所示,则不等式(x2-2x-3)f′(x)>0的解集为(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,-1)∪(-1,1)∪(3,+∞)D.(-∞,-1)∪(-1,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.
(I)求证:BH∥平面AEF;
(Ⅱ)求EH与平面AFE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}是首项为1,公差为2的等差数列,将数列{an}中的各项排成如图所示的一个三角形数表,记A(i,j)表示第i行从左至右的第j个数,例如A(4,3)=a9,则A(10,2)=93.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=e2-x+x,x∈[1,3],则下列说法正确的是(  )
A.函数f(x)的最大值为$3+\frac{1}{e}$B.函数f(x)的最小值为$3+\frac{1}{e}$
C.函数f(x)的最大值为3D.函数f(x)的最小值为3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}满足2an=an+1+an+1(n≥2),且a1+a3+a5=9,a2+a4+a6=12则a3+a4+a5=(  )
A.9B.10C.11D.12

查看答案和解析>>

同步练习册答案