【题目】已知椭圆:的一个焦点与抛物线:的焦点重合,且椭圆的离心率为.
(1)求的方程;
(2)过点的动直线与椭圆相交于两点,为原点,求面积的最大值.
【答案】(1);(2).
【解析】
(1)抛物线:的焦点坐标为,则,再根据离心率求出a,即可求出b,可得椭圆的方程;
(2)由题意知直线的斜率存在,设其方程为,设,将直线与椭圆联立成方程组,利用根与系数关系求出和,代入弦长公式即可求出,再利用点到直线距离公式求原点到直线的距离,从而可求,利用换元法根据基本不等式即可求出面积的最大值.
(1)抛物线的焦点坐标为,则,
又椭圆的离心率,所以,
所以,
故所求椭圆的标准方程为.
(2)由题意知直线的斜率存在,设其方程为,
设,则
由消去得,
由,得,
由根与系数的关系可得,,
又原点到直线的距离,
所以,
令,则,所以
,当且仅当,即,此时,
所以的面积的最大值为.
科目:高中数学 来源: 题型:
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.
参考公式: ,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商家计划投入10万元经销甲,乙两种商品,根据市场调查统计,当投资额为万元,经销甲,乙两种商品所获得的收益分别为万元与万元,其中,,当该商家把10万元全部投入经销乙商品时,所获收益为5万元.
(1)求实数a的值;
(2)若该商家把10万元投入经销甲,乙两种商品,请你帮他制订一个资金投入方案,使他能获得最大总收益,并求出最大总收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若ARB,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的有______
①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响;
②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大
③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确.
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下命题:①“若x2+ y2 ≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;其中真命题的序号是____________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com