精英家教网 > 高中数学 > 题目详情
6.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.

分析 利用条件x+2y+z=1,构造柯西不等式(x+y+z)2≤(x2+y2+z2)(12+22+12)进行解题即可.

解答 解:由柯西不等式,得(x+2y+z)2≤(12+22+12)•(x2+y2+z2),
即$x+2y+z≤\sqrt{{1^2}+{2^2}+{1^2}}•\sqrt{{x^2}+{y^2}+{z^2}}$,…(5分)
又因为x+2y+z=1,所以${x^2}+{y^2}+{z^2}≥\frac{1}{6}$,
当且仅当$\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$,即$x=z=\frac{1}{6},y=\frac{1}{3}$时取等号.
综上,${({{x^2}+{y^2}+{z^2}})_{min}}=\frac{1}{6}$.…(10分)

点评 本题主要考查了函数的最值,以及柯西不等式的应用,解题的关键是利用(x+2y+z)2≤(x2+y2+z2)(12+22+12)进行解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若两个集合{1,a},{a2}满足{1,a}∪{a2}={1,a}则实数a=-1或0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC中的内角A,B,C的对边分别为a,b,c,若$\sqrt{5}$b=4c,B=2C
(Ⅰ)求cosB;
(Ⅱ)若c=5,点D为边BC上一点,且BD=6,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一条渐近线的倾斜角为30°,则该双曲线的离心率为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆$E:\frac{x^2}{4}+\frac{y^2}{b^2}=1$(0<b<2)的焦点.
(1)求椭圆E的标准方程;
(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(-1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2-2k2=1时,求k1•k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为(  )
A.6 斤B.9 斤C.9.5斤D.12 斤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,在边长为$2\sqrt{3}$的正方形ABCD中,E、O分别为 AD、BC的中点,沿 EO将矩形ABOE折起使得∠BOC=120°,如图2,点G 在BC上,BG=2GC,M、N分别为AB、EG中点.
(Ⅰ)求证:OE⊥MN;
(Ⅱ)求点M到平面OEG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果直线l1:2x-y-1=0与直线l2:2x+(a+1)y+2=0平行,那么a等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=$\left\{\begin{array}{l}{|{2}^{x}-a|,x<2}\\{{x}^{2}-3ax+2{a}^{2},x≥2}\end{array}\right.$,若函数f(x)恰有2个零点,则实数a的取值范围是1≤a<2,或a≥4.

查看答案和解析>>

同步练习册答案