【题目】已知椭圆的两个焦点分别为和 ,过点的直线与椭圆相交于两点,且,。
(1)求椭圆的离心率;
(2)设点C与点A关于坐标原点对称,直线上有一点在 的外接圆上,求的值
【答案】(1);(2).
【解析】试题分析:(1)由且,得,从而,由此可以求出椭圆的离心率;(2)当时,得, , 线段的垂直平分线的方程为直线与轴的交点是外接圆的圆心,因此外接圆的方程为,设直线的方程为,由 ,可以推导出的值.
试题解析:(1)解:由// 且,得,从而
整理,得,故离心率
(2)解法一:由(II)可知
当时,得,由已知得.
线段的垂直平分线l的方程为直线l与x轴
的交点是外接圆的圆心,因此外接圆的方程为.
直线的方程为,于是点H(m,n)的坐标满足方程组
, 由解得故
当时,同理可得.
解法二:由(II)可知
当时,得,由已知得
由椭圆的对称性可知B, ,C三点共线,因为点H(m,n)在的外接圆上,
且,所以四边形为等腰梯形.
由直线的方程为,知点H的坐标为.
因为,所以,解得m=c(舍),或.
则,所以.
当时同理可得.
【 方法点睛】本题主要考查椭圆性质与离心率以及圆的方程与性质,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.
科目:高中数学 来源: 题型:
【题目】设椭圆的左右焦点分别为F1,F2,点P 在椭圆上运动, 的最大值为m, 的最小值为n,且m≥2n,则该椭圆的离心率的取值范围为________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,AB=BC,D、E分别为的中点.
(1)证明:ED为异面直线BB1与AC1的公垂线段;
(2)设AB=1, ,求二面角A1—AD—C1的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)已知函数(为常数,)
(1)若是函数的一个极值点,求的值;
(2)求证:当时,在上是增函数;
(3)若对任意的,总存在,使不等式成立,求正实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点为坐标原点,焦点在轴的正半轴上,过焦点作斜率为的直线交抛物线于两点,且,其中为坐标原点.
(1)求抛物线的方程;
(2)设点,直线分别交准线于点,问:在轴的正半轴上是否存在定点,使,若存在,求出定点的坐标,若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com