精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线上的点到其焦点距离为3,过抛物线外一动点作抛物线的两条切线,切点分别为,且切点弦恒过点.

1)求

2)求证:动点在一条定直线上运动.

【答案】1.(2)证明见解析

【解析】

1)根据抛物线的定义求得,由此求得抛物线方程,将的坐标代入抛物线方程,由此求得.

2)设出的坐标,根据抛物线的切线方程求得直线的方程,将的坐标代入直线的方程,由此求得直线的方程,将点坐标代入直线的方程,由此判断出动点在直线上运动.

1)由题意得

抛物线方程为,∴

2)首先推导抛物线切线方程的一般性:设抛物线上的一点为,所以抛物线过点的切线的斜率为,切线方程为,化简得.

∴抛物线的切线的方程:

抛物线的切线的方程:

均经过,∴

故直线即过,也过

方程:

∵它恒过,∴,∴它在上运动.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调查.经统计这100位居民的网购消费金额均在区间内,按分成6组,其频率分布直方图如图所示.

1)估计该社区居民最近一年来网购消费金额的中位数;

2)将网购消费金额在20千元以上者称为网购迷,补全下面的列联表,并判断有多大把握认为网购迷与性别有关系

总计

网购迷

20

非网购迷

45

总计

100

附:

临界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,分别为的中点.

1)求证:平面

2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDHKLE中,底面ABCD是边长为3的正方形,对角线ACBD相交于点O,点F在线段AH上且BE与底面ABCD所成角为.

1)求证:ACBE

2M为线段BD上一点,且,求异面直线AMBF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F是拋物线C:y2=2px(p>0)的焦点,M(x0,1)C,|MF|=.

(1)p的值;

(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点,证明:直线AM与直线BM的斜率之积为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若关于的方程恰有三个不相等的实数解,则的取值范围是  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调区间情况;

2)若函数有且只有两个零点,证明:.

查看答案和解析>>

同步练习册答案