精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞]上单调递增,若实数a满足f(log2a)+f( )≤2f(1),则a的取值范围是(
A.[1,2]
B.(0, ]
C.(0,2]
D.[ ,2]

【答案】D
【解析】解:根据题意,函数f(x)是定义在R上的偶函数,且log2a=﹣

则有f(log2a)=f( )=f(|log2a|),

f(log2a)+f( )≤2f(1)f(log2a)≤f(1)f(|log2a|)≤f(1),

又由函数f(x)在区间[0,+∞)上单调递增,

则有|log2a|≤1,

即有﹣1≤log2a≤1,

解可得: ≤a≤2,即a的取值范围是[ ,2]

故选:D.

根据题意,函数f(x)在区间[0,+∞)单调递增且为偶函数,结合对数的运算性质可以将f(log2a)+f( )≤2f(1)转化为|log2a|≤1,解可得a的取值范围,即可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列表:

喜爱打篮球

不喜爱打篮球

合计

男生

20

5

25

女生

10

15

25

合计

30

20

50


(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出K2 , 你有多大的把握认为是否喜欢打蓝球与性别有关? 附:
下面的临界值表供参考:

p(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的单调区间和极值;
(2)若函数y=g(x)对任意x满足g(x)=f(4﹣x),求证:当x>2,f(x)>g(x);
(3)若x1≠x2 , 且f(x1)=f(x2),求证:x1+x2>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一个圆锥形的空杯子上放着一个直径为8cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+3x2+9x+a(a为常数).
(1)求函数f(x)的单调递减区间;
(2)若f(x)在区间[﹣2,2]上的最大值是20,求f(x)在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是两条不同的直线, 是三个不同的平面,给出下列四个命题:
①若 ,则 ②若 ,则
③若 ,则 ④若 ,则
其中正确命题的序号是( )
A.①和②
B.②和③
C.③和④
D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过定点P(0,1),且与直线l1:x-3y+10=0,l2:2x+y-8=0分别交于A、B两点.若线段AB的中点为P,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2且l1与l2的距离为5,求l1 , l2的方程.

查看答案和解析>>

同步练习册答案