分析 (1)由C1:y=(x-m)2+m+1(m>0),可求得顶点A(m,m+1),由于点B在y轴上,根据对称即可解得m=2;
(2)由(1)知A(2,3)、B(0,1)根据勾股定理可得AB2=(2-0)2+(3-1)2=8由抛物线C2的顶点B(0,1)在y轴上得到抛物线C2的解析式为y=ax2+1设点C坐标为(c,0),根据勾股定理得到AC2=(2-c)2+32=c2-4c+13;BC2=c2+1由于△ABC是直角三角形,进行分类讨论即可求出结果.
解答 解:(1)∵C1:y=(x-m)2+m+1(m>0)
∴顶点A(m,m+1),
∵点B在y轴上,
∴设B(0,b),
又A、B关于点P(1,2)对称,
∴$\left\{\begin{array}{l}{\frac{0+m}{2}=1}\\{\frac{b+m+1}{2}=2}\end{array}\right.$,解得:m=2;
(2)由(1)知A(2,3)、B(0,1)
∴AB2=(2-0)2+(3-1)2=8
∵抛物线C2的顶点B(0,1)在y轴上
∴抛物线C2的解析式为y=ax2+1
设点C坐标为(c,0),
∴AC2=(2-c)2+32=c2-4c+13;BC2=c2+1
∵△ABC是直角三角形,
则:①当∠ABC=90°时,AC2=BC2+AB2,
即c2-4c+13=(c2+1)+8,解得:c=1
∴C1(1,0),
将点C1坐标代入y=ax2+1得:a+1=0;解得:a=-1,
∴抛物线C2的解析式为:y=-x2+1,
②当∠BAC=90°时,BC2=AC2+AB2,
即c2+1=(c2-4c+13)+8,解得:c=5,
∴C2(5,0),
将点C2坐标代入y=ax2+1得:25a+1=0,解得:a=-$\frac{1}{25}$,
∴抛物线C2的解析式为:y=-$\frac{1}{25}$x2+1,
综上,当△ABC为直角三角形时,抛物线C2的解析式为:y=-x2+1或y=-$\frac{1}{25}$x2+1.
点评 本题考查了抛物线与x轴的交点,关于点对称,正确理解关于点对称是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 11 | B. | 12 | C. | 13 | D. | 14 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com