已知函数:
(1)若函数在区间上存在零点,求实数的取值范围;
(2)问:是否存在常数,当时,的值域为区间,且的长度为.
(1) ;(2)存在,见解析.
【解析】
试题分析:(1) 先由函数对称轴为得函数在上单调减,要使函数在存在零点,则需满足,解得; (2)当时,的值域为,由,得合题意;当时,的值域为,由,得不合题意;当时,的值域为,用上面的方法得或合题意.
试题解析:⑴ ∵二次函数的对称轴是
∴函数在区间上单调递减
∴要函数在区间上存在零点须满足
即
解得 ,所以.
⑵ 当时,即时,的值域为:,即
∴
∴ ∴
经检验不合题意,舍去。
当时,即时,的值域为:,即
∴, ∴
经检验不合题意,舍去。
当时,的值域为:,即
∴
∴ ∴或
经检验或或满足题意。
所以存在常数,当时,的值域为区间,且的长度为.
考点:零点存在性定理、二次函数的单调性、二次函数值域、分类讨论思想.
科目:高中数学 来源:2010年重庆市高二上学期期中考试理科数学卷 题型:解答题
(本小题满分12分)
已知函数,
(1) 若,,且的定义域是[– 1,1],P(x1,y1),Q(x2,y2)是其图象上任意两点(),设直线PQ的斜率为k,求证:;
(2) 若,且的定义域是,.
求证:.
查看答案和解析>>
科目:高中数学 来源:重庆市2009-2010学年度下期期末考试高二数学试题(文科) 题型:解答题
1. (本小题满分13分)
已知函数.
(1) 若在x = 0处取得极值为 – 2,求a、b的值;
(2) 若在上是增函数,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com