【题目】已知函数
(1)讨论的单调性;
(2)若方程有两个不相等的实数根,求证:
【答案】(1)见解析;(2)证明见解析
【解析】
(1)对函数进行求导,根据的不同取值,结合函数的定义域,以及二次方程根的情况进行分类讨论求解即可;
(2)令,由方程有两个不相等的实数根,问题转化为函数有两个零点,对求导,然后根据的不同取值,分类讨论最后求出的取值范围,要证明,可以通过构造新函数,求导,利用新函数的单调性进行求解即可.
(1)易知的定义域为,且,
时,在上恒正,所以在上单调递增,
时,对于,
①当,即时,,在上是增函数;
②当,即时,有两个正根,
所以,,单调递增,
,,单调递减
综上,时,在上是增函数,时,在和上是增函数,在上是减函数
(2)令,
方程有两个不相等的实根函数有两个零点,
由
定义域为且
①当时,恒成立,在上单调递增,则至多有一个零点,不符合题意;
②当时,得,
在上单调递增,在上单调递减
要使有两个零点,则,由解得
此时
易知当时,
,
令,所以,
时,在为增函数,
在为增函数,,
所以,即
所以
函数在与各存在一个零点
综上所述,.
∴证明证明时,成立
设,则
易知在上递减,,在上单调递减
,
所以.
科目:高中数学 来源: 题型:
【题目】已知函数, ,其中为自然对数的底数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;
(Ⅲ)试探究当时,方程的解的个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非单调数列{an}是公比为q的等比数列,a1=,其前n项和为Sn(n∈N*),且满足S3+a3,S5+a5,S4+a4成等差数列.
(1)求数列{an}的通项公式和前n项和Sn;
(2)bn=+,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组,第2组,第3组,第4组,第5组,其中第1组有6人,得到的频率分布直方图如图所示.
(1)求m,n的值,并估计抽取的n名群众中年龄在的人数;
(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系中的原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(为实数.)
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线与曲线有公共点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(2x+)+cos(2x﹣)+cos2x﹣sin2x,x∈R.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)求函数f(x)在区间[﹣]上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com