已知函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:(,e是自然对数的底数).
(Ⅰ)函数的单调递增区间为,单调递减区间为;(Ⅱ)实数a的取值范围是;(Ⅲ)详见解析.
解析试题分析:(Ⅰ)当时,求函数的单调区间,即判断在各个区间上的符号,只需对求导即可;(Ⅱ)当时,不等式恒成立,即恒成立,令 (),只需求出最大值,让最大值小于等于零即可,可利用导数求最值,从而求出的取值范围;(Ⅲ)要证(成立,即证,即证
,由(Ⅱ)可知当时,在上恒成立,又因为,从而证出.
试题解析:(Ⅰ)当时,(),(1分)
(),(2分)
由解得,由解得,
故函数的单调递增区间为,单调递减区间为;(3分)
(Ⅱ)因当时,不等式恒成立,即恒成立,设 (),只需即可. (4分)
由, (5分)
(ⅰ)当时,,当时,,函数在上单调递减,
故 成立;(6分)
(ⅱ)当时,由,因,所以,
①若,即时,在区间上,,则函数在上单调递增,在 上无最大值(或:当时,),此时不满足条件;
②若,即时,函数在上单调递减,在区间上单调递增,同样 在上无最大值,不满足条件 ;(8分)
(ⅲ)当时,由,∵,∴,
∴,故函数在上单调递减,故成立.
综上所述,实数a的取值范围是
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是二次函数,不等式的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求的解析式;
(2)是否存在自然数m,使得方程=0在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数, 在上为增函数,且,求解下列各题:
(1)求的取值范围;
(2)若在上为单调增函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,.
(Ⅰ)若,求的极小值;
(Ⅱ)在(Ⅰ)的结论下,是否存在实常数和,使得和?若存在,求出和的值.若不存在,说明理由.
(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com