精英家教网 > 高中数学 > 题目详情

【题目】如图,游客从某旅游景区的景点处下上至处有两种路径一种是从沿直线步行到另一种是先从沿索道乘缆车到然后从沿直线步行到.现有甲、乙两位游客从处下山甲沿匀速步行,速度为.在甲出发乙从乘缆车到处停留再从匀速步行到假设缆车匀速直线运动的速度为山路长为1260经测量

1求索道的长

2问:乙出发多少,乙在缆车上与甲的距离最短?

3为使两位游客在处互相等待的时间不超过乙步行的速度应控制在什么范围内

【答案】12时,甲、乙两游客距离最短;3.

【解析】

试题分析:1根据两角和公式求得,再根据正弦定理即可求得的长;2假设乙出发后,甲、乙两游客距离为,分别表示出甲、乙二人行走的距离,根据余弦定理建立的二次函数关系,求出使得甲乙二人距离最短时的值;3根据正弦定理求得,乙从出发时,甲已走了

,还需走710才能到达,设乙步行的速度为,由题意得,J解不等式即可求得乙步行速度范围.

试题解析:1中,因为

所以

从而

由正弦定理,得

2假设乙出发后,甲、乙两游客距离为,此时,甲行走了,乙距离

所以由余弦定理得

由于,即

故当时,甲、乙两游客距离最短.

3由正弦定理

乙从出发时,甲已走了,还需走710才能到达

设乙步行的速度为,由题意得,解得

所以为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在单位:范围内.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,左、右焦点分别在轴上,离心率为,在其上有一动点到点距离的最小值是1.作一个平行四边形,顶点都在椭圆上,如图所示.

)求椭圆的方程;

)判断能否为菱形,并说明理由.

)当的面积取到最大值时,判断的形状,并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1若曲线处的切线方程为,求实数的值;

2,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3若在上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数字0、2、3、4、6按下列要求组数、计算:

(1)能组成多少个没有重复数字的三位数?

(2)可以组成多少个可以被3整除的没有重复数字的三位数?

(3)求144的所有正约数的和.

(注:每小题结果都写成数据形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为;小李后掷一枚骰子,向上的点数记为.

(1)求能被 整除的概率.

(2)规定:若,则小王赢;若,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五面体底面是正三角形四边形是矩形二面角为直二面角

1上运动在何处时平面,并说明理由;

2平面求二面角余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数.

讨论的单调性;

成立,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.

(Ⅰ求底面积,并用含x的表达式表示池壁面积;

(Ⅱ怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)设,求的单调区间;

II)若处取得极大值,求实数的取值范围.

查看答案和解析>>

同步练习册答案
閸忥拷 闂傦拷