【题目】如图,设点的坐标分别为,直线相交于点,且它们的斜率之积为.
(1)求点的轨迹方程;
(2)设点的轨迹为,点是轨迹为上不同于的两点,且满足,求证:的面积为定值.
【答案】(1)(2)
【解析】
试题分析:(1)直接法求动点轨迹方程:先设动点坐标,根据条件斜率之积为列方程:,化简整理得标准方程,注意变形过程中的等价性,即纯粹性(2)解决解析几何中定值问题,一般方法为以算代证,即计算出的面积,由平行条件得斜率关系:由得,即得坐标关系;设直线的方程,与椭圆方程联立,利用韦达定理可得,代入可得,而三角形面积可表示为,将代入化简得
试题解析:(1)由已知设点的坐标为,由题意知
,
化简得的轨迹方程为...........................5分
(2)证明:由题意是椭圆上非顶点的两点,且,
则直线斜率必存在且不为0,又由已知.
因为,所以...............6分
设直线的方程为,代入椭圆方程,得
....①,.......................7分
设的坐标分别为,则............8分
又,................9分
所以,得........................... 10分
又,
所以,即的面积为定值.................12分
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线的极坐标方程为, 与的交点为.
(1)判断点与曲线的位置关系;
(2)点为曲线上的任意一点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国好声音(The Voice of China)》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手演唱完后,四位导师为其转身的情况如下表所示:
现从这6位选手中随机抽取两人考查他们演唱完后导师的转身情况.
(1)求选出的两人导师为其转身的人数和为4的概率;
(2)记选出的2人导师为其转身的人数之和为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在上是增函数,求实数的取值范围;
(2)求所有的实数,使得对任意时,函数的图象恒在函数图象的下方;
(3)若存在,使得关于的方程有三个不相等的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国家“精准扶贫,产业扶贫“的战略,进一步优化能源消费结构,某市决定在一地处山区的县推进光伏发电项目,在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表,以样本的频率作为概率.
用电量(度) | |||||
户数 | 5 | 15 | 10 | 15 | 5 |
(1)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为,求的数学期望;
(2)已知该县某山区自然村有居民300户,若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以元/度进行收购.经测算以每千瓦装机容量平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的长轴长是短轴长的倍,右焦点为,点分别是该椭圆的上、下顶点,点是直线上的一个动点(与轴交点除外),直线交椭圆于另一点,记直线, 的斜率分别为
(1)当直线过点时,求的值;
(2)求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位从一所学校招收某类特殊人才,对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
例如表中运动协调能力良好且逻辑思维能力一般的学生是4人,由于部分数据丢失,只知道从这20位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为.
(1)求、的值;
(2)从运动协调能力为优秀的学生中任意抽取2位,求其中至少有一位逻辑思维能力优秀的学生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com