精英家教网 > 高中数学 > 题目详情
5.已知二次函数f(x)=x2+$\sqrt{m}$•x+n满足f(0)=2且方程f(x)=-2有相等实数根.
(1)求f(x)的表达式.
(2)求函数$g(x)={(\frac{1}{2})^{f(x)}}$的值域.

分析 (1)由题意可得n=2,$\sqrt{m}$=4,从而解得;
(2)由f(x)=x2+4x+2≥-2知0<$(\frac{1}{2})^{f(x)}$≤$(\frac{1}{2})^{-2}$=4,从而解得.

解答 解:(1)∵f(0)=2,
∴n=2;
∵方程f(x)=-2有相等实数根,
∴x2+$\sqrt{m}$•x+4=0有相等实数根,
∴$\sqrt{m}$=4,故m=16;
故f(x)=x2+4x+2;
(2)∵f(x)=x2+4x+2≥-2,
∴0<$(\frac{1}{2})^{f(x)}$≤$(\frac{1}{2})^{-2}$=4,
故函数$g(x)={(\frac{1}{2})^{f(x)}}$的值域为(0,4].

点评 本题考查了二次函数与二次方程的关系应用及复合函数的值域的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.定义在R上的偶函数f(x),对任意x∈R,均有f(x+4)=f(x)成立,当x∈[0,2]时,f(x)=2x+1,则直线y=4与y=f(x)的图象交点中最近两点的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=x+$\frac{m}{2}$y(m>0)的最大值为2,
则y=sin(mx+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$后的表达式为y=sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有一批同规格的钢条,每根钢条有两种切割方式,第一种方式可截成长度为a的钢条2根,长度为b的钢条1根;
第二种方式可截成长度为a的钢条1根,长度为b的钢条3根.现长度为a的钢条至少需要15根,长度为b的钢条至少需要27根.
问:如何切割可使钢条用量最省?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.把0.80.7、0.80.9、1.20.8这三个数从小到大排列起来0.80.9<0.80.7<1.20.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$-1<a<0,A=1+{a^2},B=1-{a^2},C=\frac{1}{1+a}$,比较A,B,C的大小结果为(  )
A.A<B<CB.B<C<AC.A<C<BD.B<A<C

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若1∈{2+x,x2},则x=(  )
A.-1B.1C.-1或1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2cos(ωx+$\frac{π}{6}$),其中ω>0,x∈R,其最小正周期是10π.
(1)求f(x)的解析式和单调递增区间
(2)若存在x$∈[-\frac{5π}{3},-\frac{5π}{6}]$,使得f(x)-a+1<0成立,求实数a的取值范围;
(3)若$α,β∈[0,\frac{π}{2}]$,且f(5α+$\frac{5π}{3}$)=$-\frac{6}{5}$,f(5β-$\frac{5π}{6}$)=$\frac{16}{17}$,求cosαcosβ-sinαsinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的周期:
(1)y=cos$\frac{1}{2}$x;
(2)y=3sin($\frac{x}{2}$-$\frac{π}{4}$);
((3)y=|sin2x|;
(4)y=2sin($\frac{1}{2}$x+$\frac{π}{3}$)-cos($\frac{1}{2}$x-$\frac{π}{6}$)+7.

查看答案和解析>>

同步练习册答案