分析 (Ⅰ)由已知直接求得${a}_{2}=\sqrt{5}$,${a}_{3}=\sqrt{\sqrt{5}+2}$;
(Ⅱ)由已知得${{a}_{n}}^{2}={a}_{n-1}+2$,则${{a}_{n+1}}^{2}={a}_{n}+2$,进一步可得${{a}_{n+1}}^{2}-{{a}_{n}}^{2}={a}_{n}-{a}_{n-1}$,结合an>0,可得an+1-an与an-an-1同号,再由${a}_{2}-{a}_{1}=\sqrt{5}-3<0$,可得an-an-1<0,即an<an-1,数列{an}单调递减;
(Ⅲ)由${{a}_{n}}^{2}={a}_{n-1}+2$,得${{a}_{n}}^{2}-4={a}_{n-1}-2$,即(an-2)(an+2)=an-1-2,得$|{a}_{n}-2|=\frac{|{a}_{n-1}-2|}{{a}_{n}+2}$,由(an-2)(an+2)=an-1-2,知an-2与an-1-2同号,知an-2>0,得到$\frac{1}{{a}_{n}+2}<\frac{1}{4}$.则答案得证.
解答 (Ⅰ)解:由a1=3,an=$\sqrt{{a}_{n-1}+2}$,求得${a}_{2}=\sqrt{5}$,${a}_{3}=\sqrt{\sqrt{5}+2}$;
(Ⅱ)证明:a1=3,an=$\sqrt{{a}_{n-1}+2}$,得an>0,
且${{a}_{n}}^{2}={a}_{n-1}+2$,则${{a}_{n+1}}^{2}={a}_{n}+2$,
联立可得${{a}_{n+1}}^{2}-{{a}_{n}}^{2}={a}_{n}-{a}_{n-1}$,即(an+1+an)(an+1-an)=an-an-1,
∵an>0,∴an+1-an与an-an-1同号,
由${a}_{2}-{a}_{1}=\sqrt{5}-3<0$,可得an-an-1<0,即an<an-1.
∴数列{an}单调递减;
(Ⅲ)证明:由${{a}_{n}}^{2}={a}_{n-1}+2$,得${{a}_{n}}^{2}-4={a}_{n-1}-2$,
(an-2)(an+2)=an-1-2,
∴$|{a}_{n}-2|=\frac{|{a}_{n-1}-2|}{{a}_{n}+2}$,
由(an-2)(an+2)=an-1-2,知an-2与an-1-2同号,
由于a1-2=3-2=1>0,可知an-2>0,
∴an+2>4,则$\frac{1}{{a}_{n}+2}<\frac{1}{4}$.
∴|an-2|<$\frac{1}{4}$|an-1-2|(n=2,3,…).
点评 本题考查数列递推式,训练了放缩法证明数列不等式,属难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{100(tanβ-tanα)}{tanαtanβ}$ | B. | $\frac{100tanαtanβ}{tanα-tanβ}$ | ||
C. | $\frac{100(tanα+tanβ)}{tanαtanβ}$ | D. | $\frac{100tanαtanβ}{tanα+tanβ}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|x<-2或x>3} | B. | {x|-3<x<2} | C. | {x|x<-3或x>2} | D. | {x|-2<x<3} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com