精英家教网 > 高中数学 > 题目详情

A={1,2},则满足A∪B ={1,2,3,4}的集合B的个数为,


  1. A.
    1
  2. B.
    3
  3. C.
    4
  4. D.
    8
C
解析:
解:由A={1,2},则满足A∪B ={1,2,3,4},说明集合B的元素至少含有3,4两个元素,最多是4个元素,而这样的集合,两元素的集合为1个,三个元素的集合为2个,四个元素的集合为1个,共有4个。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若平面向
a
=(x,y),
b
=(x2y2)
c
=(2,2),
d
=(1,1)
则满
a
c
=
b
d
=1
的向量
a
共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网甲乙两人进行围棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为p(p>
1
2
)
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
5
9

(Ⅰ)若右图为统计这次比赛的局数n和甲、乙的总得分数S、T的程序框图.其中如果甲获胜,输入a=1,b=0;如果乙获胜,则输入a=0,b=1.请问在第一、第二两个判断框中应分别填写什么条件?
(Ⅱ)求p的值;
(Ⅲ)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.
注:“n=0”,即为“n←0”或为“n:=0”.

查看答案和解析>>

科目:高中数学 来源: 题型:

在第十六届广州亚运会上,某项目的比赛规则为:由两人(记为甲和乙)进行比赛,每局胜者得1分,负者得0分(无平局),比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为p(p>0.5),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
59

(Ⅰ)求实数p的值;
(Ⅱ)如图为统计比赛的局数n和甲、乙的总得分数S、T的程序框图.其中如果甲获胜,输入a=1,b=0;如果乙获胜,则输入a=0,b=1.请问在第一、第二两个判断框中应分别填写什么条件;
(Ⅲ)设ζ表示比赛停止时已比赛的局数,求随机变量ζ的分布列和数学期望Eζ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)甲乙两人进行乒乓球对抗赛,约定每局胜者得1分,负者得0分,比赛进行到有一个比对方多2分或打满6局时停止.设甲在每局中获胜的概率为P(P>
1
2
)
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
5
9
.若图为统计这次比赛的局数n和甲,乙的总得分数S,T的程序框图.其中如果甲获胜则输入a=1,b=0.如果乙获胜,则输入a=0,b=1.
(1)在图中,第一,第二两个判断框应分别填写什么条件?
(2)求P的值.
(3)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌三模)甲乙两人进行围棋比赛,约定每局胜者得1分,负者得0分.比赛进行到有一人比对方多2分或打满6局时停止,设甲在每局中获胜的概率为p(p>
1
2
)
,且各局胜负相互独立,已知第二局比赛结束时比赛停止的概率为
5
9
,若右图为统计这次比赛的局数和甲乙的总得分数S,T的程序框图,其中如果甲获胜,输入a=1,b=0;如果乙获胜,则输入a=0,b=1.
(I)求p的值;
(Ⅱ)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列数学望Eξ.

查看答案和解析>>

同步练习册答案