【题目】如图,四棱锥中,平面平面,若,四边形是平行四边形,且.
(Ⅰ)求证:;
(Ⅱ)若点在线段上,且平面,,,求二面角的余弦值.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】
(Ⅰ)推导出BC⊥CE,从而EC⊥平面ABCD,进而EC⊥BD,再由BD⊥AE,得BD⊥平面
AEC,从而BD⊥AC,进而四边形ABCD是菱形,由此能证明AB=AD.
(Ⅱ)设AC与BD的交点为G,推导出EC// FG,取BC的中点为O,连结OD,则OD⊥BC,以O为坐标原点,以过点O且与CE平行的直线为x轴,以BC为y轴,OD为z轴,建立
空间直角坐标系,利用向量法能求出二面角A-BF-D的余弦值.
(Ⅰ)证明:,即,
因为平面平面,
所以平面,
所以,
因为,
所以平面,
所以,
因为四边形是平行四边形,
所以四边形是菱形,
故;
解法一:(Ⅱ)设与的交点为,
因为平面,
平面平面于,
所以,
因为是中点,
所以是的中点,
因为,
取的中点为,连接,
则,
因为平面平面,
所以面,
以为坐标原点,以过点且与平行的直线为轴,以所在直线为轴,以所在直线为轴建立空间直角坐标系.不妨设,则,,,,,,,
设平面的法向量,
则,取,
同理可得平面的法向量,
设平面与平面的夹角为,
因为,
所以二面角的余弦值为.
解法二:(Ⅱ)设与的交点为,
因为平面,平面平面于,
所以,
因为是中点,
所以是的中点,
因为,,
所以平面,
所以,
取中点,连接、,
因为,
所以,
故平面,
所以,即是二面角的平面角,
不妨设,
因为,,
在中,,
所以,所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】过椭圆右焦点的直线交椭圆与A,B两点,为其左焦点,已知的周长为8,椭圆的离心率为.
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆任意一条切线与椭圆恒有两个交点,?若存在,求出该圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,不与坐标轴垂直的直线与抛物线交于两点,当且时,.
(1)求抛物线的标准方程;
(2)若过定点,点关于轴的对称点为,证明:直线过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是抛物线的焦点,是抛物线上一点过三点的圆的圆心为,点到抛物线的准线的距离为.
(1)求抛物线的方程;
(2)若点的横坐标为4,过的直线与抛物线有两个不同的交点,直线与圆交于点,且点的横坐标大于4,求当取得最小值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底, 是的中点。
(1)证明:直线平面;
(2)点在棱上,且直线与底面所成角为,求二面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )
A.甲的数据分析素养优于乙B.乙的数据分析素养优于数学建模素养
C.甲的六大素养整体水平优于乙D.甲的六大素养中数学运算最强
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com