精英家教网 > 高中数学 > 题目详情
已知函数y=a x2-3x+3,当x∈[1,3]时,有最小值8,求a的值.
考点:函数的最值及其几何意义
专题:计算题,函数的性质及应用
分析:化简y=x2-3x+3=(x-
3
2
2+
3
4
,从而由分类讨论的思想求最值.
解答: 解:∵y=x2-3x+3=(x-
3
2
2+
3
4

3
4
≤(x-
3
2
2+
3
4
≤3;
①当0<a<1时,
a3=8,故a=2(舍去);
②当a>1时,a
3
4
=8,
解得,a=16;
综上所述,a=16.
点评:本题考查了配方法的应用及分类讨论的思想应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1的焦距为10,点P(1,2)在C的渐近线上,则C的方程为(  )
A、
x2
80
-
y2
20
=1
B、
x2
20
-
y2
80
=1
C、
x2
5
-
y2
20
=1
D、
x2
20
-
y2
5
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

若P(x,y)在区域
x-3y+3≥0
2x+y≤4
y≤2x
y≥0
内,点M(3,5),则
OM
MP
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x≥1
y≤2
x-y≤0
,记目标函数z=x+y的最小值为t,已知实数a、b满足a+b=t,则3a+3b的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)是定义域为R的奇函数,且对任意的x∈R,都有f(x+4)=f(x)成立,当x∈(0,2),f(x)=-x2+1.
(Ⅰ)当x∈(2,6)时,求函数f(x)的解析式;
(Ⅱ)求不等式f(x)>-1在区间(2,6)上的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,O为坐标原点,点A(0,3),设圆C的半径为1,圆心C(a,b)在直线l:y=2x-4上.
(1)若圆心也在直线y=-x+5上,求圆C的方程;
(2)在(1)的条件下,过点 A作圆C的切线,求切线的方程;
(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线x2-y2=1与曲线(x-1)2+y2=a2(a>0)恰好有三个不同的公共点,则实数a的取值(范围)为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程:x2+y2-2x-4y+m=0.
(1)求m的取值范围;
(2)当m=4时,求直线l:x+2y-4=0被圆C所截得的弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在与530°终边相同的角中,求满足下列条件的角.
(1)最大的负角;
(2)最小的正角;
(3)-720°到-360°的角.

查看答案和解析>>

同步练习册答案