精英家教网 > 高中数学 > 题目详情

【题目】某研究所计划利用神七宇宙飞船进行新产品搭载实验,计划搭载新产品AB,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:


产品A()

产品B()


研制成本与塔载
费用之和(万元/)

20

30

计划最大资
金额300万元

产品重量(千克/)

10

5

最大搭载
重量110千克

预计收益(万元/)

80

60


试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

【答案】见解析

【解析】

作出直线l04x3y0并平移,由图象得,当直线经过M点时z能取得最大值,

解得,即M(9,4)

所以zmax80×960×4960(万元)

答:搭载产品A 9件,产品B 4件,可使得总预计收益最大,为960万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间直角坐标系中,已知正四棱锥的高,点分别在轴和轴上,且,点是棱的中点.

(1)求直线与平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)

男职工

女职工

总计

每周平均上网时间不超过4个小时

每周平均上网时间超过4个小时

70

总计

300

(Ⅰ)应收集多少名女职工样本数据?

(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:.试估计该公司职工每周平均上网时间超过4小时的概率是多少?

(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的左右焦点分别为.椭圆C上任一点P都满足,并且该椭圆过点.

求椭圆C的方程;

Ⅱ)过点的直线l与椭圆C交于A,B两点,过点Ax轴的垂线,交该椭圆于点M,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中

(i)当时,若,则实数的取值范围是___________

(ii) 若存在实数使得方程有两个实根,则实数的取值范围是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(

A.对具有线性相关关系的变量有一组观测数据,其线性回归方程是,且,则实数的值是

B.正态分布在区间上取值的概率相等

C.若两个随机变量的线性相关性越强,则相关系数的值越接近于1

D.若一组数据的平均数是2,则这组数据的众数和中位数都是2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为

求曲线C的直角坐标方程与直线l的极坐标方程;

若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,其准线与轴的交点为,过点作斜率为的直线交抛物线于两点,若,则的值为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案