精英家教网 > 高中数学 > 题目详情
15.设数列{an}满足a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=1-$\frac{1}{{2}^{n}}$,则an=(  )
A.1-$\frac{1}{{2}^{n}}$B.$\frac{1}{{2}^{n-3}}$C.$\frac{1}{{2}^{n}}$D.$\frac{n}{{2}^{n}}$

分析 利用递推关系即可得出.

解答 解:∵a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=1-$\frac{1}{{2}^{n}}$,
∴当n=1时,a1=1-$\frac{1}{2}$=$\frac{1}{2}$.
当n≥2时,a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n-1}}{n-1}$=1-$\frac{1}{{2}^{n-1}}$,
∴$\frac{{a}_{n}}{n}$=1-$\frac{1}{{2}^{n}}$-$(1-\frac{1}{{2}^{n-1}})$=$\frac{1}{{2}^{n}}$,
∴an=$\frac{n}{{2}^{n}}$.
当n=1时也成立,
∴an=$\frac{n}{{2}^{n}}$.
故选:D.

点评 本题考查了数列的通项公式求法、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.直线l和两条直线l1:x-3y+10=0,及l2:2x+y-8=0都相交,且这两个交点所成的线段的中点P(0,1),则直线l的方程是2x+3y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在空间中,已知平面α过点(3,0,0)和点(0,4,0)及z轴上一点(0,0,a)(a>0),如果平面α与平面xOy上的夹角为45°,则a=$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,那么($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等差数列{an}中,a4=9,a9=-6,且Sn=54,则n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2013+ax+loga(1-x)(a>0且a≠1)的图象过定点,则该定点的坐标为(0,2014).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-3x<0,x∈Z},B={0,a},若A∩B≠∅,则实数a等于(  )
A.1B.2C.1或2D.1或2或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)={cos^2}(x+\frac{π}{12})$,g(x)=1+$\frac{1}{2}$sin2x,h(x)=f(x)+g(x).
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(2x0)的值;
(2)求函数h(x)的单调增区间;
(3)p(x)=h(x)-t在x∈$[0,\frac{π}{2}]$上有1个零点,求t的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\frac{{\sqrt{x}}}{3}+\frac{{\sqrt{y}}}{4}$=1,则xy的最大值是(  )
A.3B.4C.6D.9

查看答案和解析>>

同步练习册答案