精英家教网 > 高中数学 > 题目详情

如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点B1在底面上的射影D落在BC上.

(1)若点D恰为BC的中点,且AB1⊥BC1求α的值.
(2)若α=arccos数学公式,且当AC=BC=AA1时,求二面角C1-AB-C的大小.

解:(1)∵B1D⊥面ABC,
∴B1D⊥AC,
又∵AC⊥BC,
∴AC⊥面BB1C1C.
∵AB1⊥BC1
∴由三垂线定理可知,B1C⊥BC1,即平行四边形BB1C1C为菱形,
又∵B1D⊥BC,且D为BC的中点,
∴B1C=B1B,即△BB1C为正三角形,
∴∠B1BC=60°,
∵B1D⊥面ABC,且点D落在BC上,
∴∠B1BC即为侧棱与底面所成的角,
∴α=60°.
(2)过C1作C1E⊥BC,垂足为E,则C1E⊥平面ABC.过E作EF⊥AB,垂足为F,由三垂线定理得⊥F⊥AB.
∴根据二面角平面角的定义可得:∠C1FE是所求二面角C1-AB-C的平面角.
设AC=BC=A1A=a,
在Rt△CC1E中,由∠C1CE=α=srccos可得C1E=a,
所以在Rt△BEF中,∠EBF=45°,EF=BE=a,
所以∠C1FE=45°.
故所求的二面角C1-AB-C为45°.
分析:(1)由题意可得:B1D⊥AC,再结合题意得到:AC⊥面BB1C1C,得到平行四边形BB1C1C为菱形,再根据解三角形的有关知识可得:∠B1BC=60°,进而结合线面角的定义得到答案.
(2)过C1作C1E⊥BC,垂足为E,则C1E⊥平面ABC.过E作EF⊥AB,垂足为F,则根据二面角平面角的定义可得:∠C1FE是所求二面角C1-AB-C的平面角,吧平面角放入直角三角形,进而利用解三角形的有关知识求出二面角的平面角.
点评:本题考查求二面角的平面角与线面角,而空间角解决的关键是做角,由图形的结构及题设条件正确作出平面角来,是求角的关键,也可以根据几何体的结构特征建立空间直角坐标系利用向量的有关知识解决空间角等问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(甲)如图,已知斜三棱柱ABC-A1B1C1的侧面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成的角的大小;
(2)求侧面A1B与底面所成二面角的大小;
(3)求点C到侧面A1B的距离.
(乙)在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:A'F⊥C'E;
(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成的角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥AB;
(3)求二面角B1-BC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥C1A;
(3)求二面角B1-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成的角为θ,且
AB1⊥BC1,点B1在底面上的射影D在BC上.
(I)若D点是BC的中点,求θ;
(Ⅱ)若cosθ=
13
,且AC=BC=AA1=a,求二面角C-AB-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)如图,已知斜三棱柱ABC-A1B1C1中,点B1在底面ABC上的射影落在BC上,CA=CB=a,AB=
2
a

(1)求证:AC⊥平面BCC1B1
(2)当BB1与底面ABC所成的角为60°,且AB1⊥BC1时,求点B1到平面AC1的距离.

查看答案和解析>>

同步练习册答案