精英家教网 > 高中数学 > 题目详情
如图,在直四棱柱(侧棱与底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,给出以下结论:
(1)异面直线A1B1与CD1所成的角为45°;
(2)D1C⊥AC1
(3)在棱DC上存在一点E,使D1E∥平面A1BD,这个点为DC的中点;
(4)在棱AA1上不存在点F,使三棱锥F-BCD的体积为直四棱柱体积的
1
5

其中正确的个数有(  )
分析:直接利用已知条件推出异面直线所成的角判断(1)的正误;通过直线与平面的位置关系判断(2)的正误;通过直线与平面的平行判断(3)的正误;几何体的体积判断(4)的正误即可.
解答:解:(1)由题意可知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,所以△DD1C1是等腰直角三角形,A1B1∥C1D1,异面直线A1B1与CD1所成的角为45°,所以(1)正确.
(2)由题意可知,AD⊥平面DD1C1C,四边形DD1C1C是正方形,所以D1C⊥DC1
可得D1C⊥AC1;(2)正确;
对于(3)在棱DC上存在一点E,使D1E∥平面A1BD,这个点为DC的中点,因为
DC=DD1=2AD=2AB,如图HG
.
1
2
D1E
,所以E为中点,正确.
(4)设AB=1,则棱柱的体积为:
1+2
2
×1×1
=
3
2
,当F在A1时,A1-BCD的体积为:
1
3
×
1
2
×1×2×1
=
1
3
,显然体积比为
2
9
1
5
,所以在棱AA1上存在点F,使三棱锥F-BCD的体积为直四棱柱体积的
1
5
,所以(4)不正确.
正确结果有(1)、(2)、(3).
故选C.
点评:本题考查棱柱的结构特征,几何体的体积的求法,直线与平面的位置关系的判断,考查空间想象能力计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直四棱柱ABCD-A1B1C1D1中,底面是边长为1的菱形,侧棱长为2.
(1)B1D1与A1D能否垂直?请证明你的判断;
(2)当∠A1B1C1[
π
3
π
2
]
上变化时,求异面直线AC1与A1B1所成角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,在直四棱柱(侧棱与底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,给出以下结论:
(1)异面直线A1B1与CD1所成的角为45°;
(2)D1C⊥AC1
(3)在棱DC上存在一点E,使D1E∥平面A1BD,这个点为DC的中点;
(4)在棱AA1上不存在点F,使三棱锥F-BCD的体积为直四棱柱体积的数学公式
其中正确的个数有


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省六校联盟高三(下)回头考数学试卷(文科)(解析版) 题型:选择题

如图,在直四棱柱(侧棱与底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,给出以下结论:
(1)异面直线A1B1与CD1所成的角为45°;
(2)D1C⊥AC1
(3)在棱DC上存在一点E,使D1E∥平面A1BD,这个点为DC的中点;
(4)在棱AA1上不存在点F,使三棱锥F-BCD的体积为直四棱柱体积的
其中正确的个数有( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱(侧棱与底面垂直)中,四边形ABCD是边长为1的菱形,E为的中点,F为的中点,则异面直线AC与所成的角的大小为             

 

 

查看答案和解析>>

同步练习册答案