精英家教网 > 高中数学 > 题目详情
已知△ABC的内角A,B,C成等差数列,则cos2A+cos2C的取值范围是
[
1
2
3
2
]
[
1
2
3
2
]
分析:由A,B及C成等差数列,根据等差数列的性质求出B的度数,进而得到A+C的度数,利用二倍角的余弦函数公式化简所求式子,再利用积化和差变形,把A+C的度数代入,利用特殊角的三角函数值化简为一个角的余弦函数,由余弦函数的值域即可得到所求式子的范围.
解答:解:∵A,B,C成等差数列,
∴2B=A+C,又A+B+C=π,
∴B=60°,即A+C=120°,
cos2A+cos2C
=
1+cos2A
2
+
1+cos2c
2

=1+
cos2A+cos2C
2

=1+cos(A+C)cos(A-C)
=1-
1
2
cos(A-C),
∵-1≤cos(A-C)≤1,
1
2
≤1-
1
2
cos(A-C)≤
3
2

则cos2A+cos2C的取值范围是[
1
2
3
2
].
故答案为:[
1
2
3
2
]
点评:此题考查了等差数列的性质,二倍角的余弦函数公式,积化和差公式,以及余弦函数的值域,利用三角函数的恒等变形把所求式子化为一个角的余弦函数是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的内角A、B、C的对边分别为a,b,c,acosB+bcosA=csin(A-B),且a2+b2-
3
ab=c2
,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A、B、C所对边的长分别为a、b、c,若ac=5,且
BA
BC
=
5

(1)求△ABC的面积大小及tanB的值;
(2)若函数f(x)=
2cos2
x
2
+2sin
x
2
cos
x
2
-1
cos(
π
4
+x)
,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=
7
2
;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则
b
c
+
c
b
的取值范围是[2,
5
]
.其中正确说法的序号是
①④⑤
①④⑤
(注:把你认为是正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)已知△ABC的内角A、B、C所对的边a、b、c满足(a+b)2-c2=6且C=60°,则△ABC的面积S=
3
2
3
2

查看答案和解析>>

同步练习册答案