【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设函数f(x)=( )x , 数列{bn}满足条件b1=2,f(bn+1)= ,(n∈N*),若cn= ,求数列{cn}的前n项和Tn .
【答案】解:(Ⅰ)当n=1,a1=2a1﹣2,即a1=2,
当n≥2时,Sn﹣1=2an﹣1﹣2,
an=Sn﹣Sn﹣1=2an﹣2﹣(2an﹣1﹣2)=2an﹣2an﹣1 ,
∴an=2an﹣1 ,
∴数列{an}是以2为首项,2为公比的等比数列,
∴an=2×2n﹣1=2n ,
数列{an}的通项公式an=2n;
(Ⅱ∵)f(x)=( )x , f(bn+1)= ,(n∈N*),
∴ = ,
∴ = ,即bn+1=bn+3,
∴bn+1﹣bn=3,
b1=f(﹣1)=2,
∴数列{bn}是以2为首项,3为公差的等差数列,
∴bn=3n﹣1,
cn= = ,
∴Tn= + + +…+ + ,
Tn= + + +…+ + ,
两式相减得: Tn=1+ + + +…+ ﹣ ,
=1+ × ﹣ ,
=1+ (1﹣ )﹣ ,
∴Tn=2+3(1﹣ )﹣ ,
=2+3 ﹣ ,
∴Tn=5
【解析】(Ⅰ)由当n=1,a1=2,当n≥2时,Sn﹣1=2an﹣1﹣2,an=Sn﹣Sn﹣1=2an﹣2an﹣1 , 可知an=2an﹣1 , 数列{an}是以2为首项,2为公比的等比数列,数列{an}的通项公式an=2n;(Ⅱ)f(bn+1)= ,(n∈N*),代入即可求得bn+1=bn+3,b1=f(﹣1)=2,数列{bn}是以2为首项,3为公差的等差数列,cn= = ,利用“错位相减法”即可求得,数列{cn}的前n项和Tn .
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.
科目:高中数学 来源: 题型:
【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.
图中,课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组”).
(Ⅰ)在“组”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组”中选择课
程或课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择课程的学生中有人参加科学营活动,每人需缴纳元,选择课程的学生中有人参加该活动,每人需缴纳元.记选择课程和课程的学生自愿报名人数的情况为,参加活动的学生缴纳费用总和为元.
①当时,写出的所有可能取值;
②若选择课程的同学都参加科学营活动,求元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱与四边形BDEF相交于BD, 平面ABCD,DE//BF,BF=2DE,AF⊥FC,M为CF的中点, .
(I)求证:GM//平面CDE;
(II)求证:平面ACE⊥平面ACF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查某社区居民的业余生活状况,研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:
休闲方式 | 看电视 | 看书 | 合计 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合计 | 20 | 60 | 80 |
(1)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段居民的休闲方式与性别有关系”?
(2)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X.求X的数学期望和方差.
P(X2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附:X2= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}首项a1=1,公差为d,且数列 是公比为4的等比数列,
(1)求d;
(2)求数列{an}的通项公式an及前n项和Sn;
(3)求数列 的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A、B、C所对的边分别为a,b,c.
(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注: )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com