精英家教网 > 高中数学 > 题目详情
(x-1)10的展开式中第6项系的系数是(  )
A、-
C
5
10
B、
C
5
10
C、-
C
6
10
D、
C
6
10
考点:二项式系数的性质
专题:计算题,二项式定理
分析:用二项展开式的通项公式得第r+1项,令r+1=6得展开式的第6项的系数.
解答: 解:∵Tr+1=C10rx10-r•(-1)r
∴令r=5,可得(x-1)10的展开式中第6项系的系数为:(-1)5C105=-C105
故选:A.
点评:二项展开式的通项公式是解决二项展开式的特定项问题的工具.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:
x=t
y=t-2
(t为参数)与曲线C:
x=2cosθ
y=2sinθ
为参数)交于A、B两点,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若点(x,y)在曲线y=-|x|与y=-2所围成的封闭区域内(包括边界),则2x-y的最大值为(  )
A、-6B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、命题“若p,则q”的否命题是“若p,则¬q”
B、a+b=0的充要条件是
a
b
=-1
C、已知命题p、q,若“p∨q”为假命题,则命题p与q一真一假
D、命题p:?x∈R,使得x2+1<0,则¬p:?x∈R,使得x2+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(x-2)=-f(x),且在[0,1]上是增函数,则有(  )
A、f(
1
4
)<f(-
1
4
)<f(
3
2
)
B、f(-
1
4
)<f(
1
4
)<f(
3
2
)
C、f(
1
4
)<f(
3
2
)<f(-
1
4
)
D、f(-
1
4
)<f(
3
2
)<f(
1
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数m(m-1)+(m2-3m+2)i是纯虚数(其中i为虚数单位),则m=(  )
A、0或1B、1C、0D、1或2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.试证明:
(1)?a∈R,y=(a+1)(2x-1)是函数y=f(x)的图象的一条切线;
(2)?a∈R,存在ξ∈(1,e),使f′(ξ)=
f(e)-f(1)
e-1

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:当x∈R时,任意f(x)都可以写成一个奇函数与一个偶函数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①命题“若α=β,则cosα=cos β”的逆否命题;
②若mx2-mx-1<0恒成立,则-4<m<0;
③命题“x2=4”是“x=-2”的充分不必要条件;
④p:a∈{a,b,c},q:{a}⊆{a,b,c},p且q为真命题.
其中真命题的序号是
 
.(填写所有真命题的序号)

查看答案和解析>>

同步练习册答案