精英家教网 > 高中数学 > 题目详情
15.若θ∈(0,π),且sinθ+cosθ=$\frac{1}{5}$,则曲线$\frac{{x}^{2}}{sinθ}$+$\frac{{y}^{2}}{cosθ}$=1是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

分析 把sinθ+cosθ=$\frac{1}{5}$两边平方可得,sinθ•cosθ<0,可判断θ为钝角,cosθ<0,从而判断方程所表示的曲线.

解答 解:因为θ∈(0,π),且sinθ+cosθ=$\frac{1}{5}$,所以θ∈($\frac{π}{2}$,π),
且|sinθ|>|cosθ|,从而sinθ>0,cosθ<0,
从而曲线$\frac{{x}^{2}}{sinθ}$+$\frac{{y}^{2}}{cosθ}$=1表示焦点在x轴上的双曲线.
故选:C.

点评 本题考查圆锥曲线的共同特征,由三角函数式判断角的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;    
(2)求不等式${log_{\frac{1}{3}}}(x-1)>{log_{\frac{1}{3}}}$(a-x)的解集;
(3)设方程${log_{2a}}x={(\frac{1}{2a})^x}\;,\;{log_{\frac{1}{2a}}}x={(\frac{1}{2a})^x}$的根分别为x1,x2,求x1x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若二次函数f(x)=x2+mx+3+2m
(1)若函数f(x)有两个零点,其中一个零点小于0,另一零点大于5,求m的取值范围;
(2)f(x)在区间[1,7]上有最大值22,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.要得到函数$y=sin({\frac{x}{2}-\frac{π}{4}})$的图象,只需将y=sin$\frac{x}{2}$的图象(  )
A.向左平移$\frac{π}{2}$个单位B.向右平移$\frac{π}{2}$个单位
C.向左平移$\frac{π}{4}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的s的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.据气象中心观察和预测:发生于 地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t的函数图象如图所示,过线段OC 上一点T(t,0)作横轴的垂线l,梯形OABC在直线l 左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)求速度v 关于时间t 的函数解析式;
(2)求路程s 关于时间t 的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,若a1=-2,an+1=an+n•2n,则an=(  )
A.(n-2)•2nB.1-$\frac{1}{{2}^{n}}$C.$\frac{2}{3}$(1-$\frac{1}{{4}^{n}}$)D.$\frac{2}{3}$(1-$\frac{1}{{2}^{n}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F(c,0),一条渐近线为l,圆(x-c)2+y2=c2截直线l所得弦长为2$\sqrt{2}$,则该双曲线的实轴长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{cosx}{1+sinx}$=$\frac{1}{2}$,求$\frac{sinx-1}{cosx}$=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案