4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµã£¨$\frac{3}{2}$£¬-$\frac{\sqrt{6}}{2}$£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£®
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨II£©ÈôµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÍÖÔ²CÉϵÄÁÁµã£¬ÇÒx1¡Ùx2£¬µãP£¨1£¬0£©£¬Ö¤Ã÷£º¡÷PAB²»¿ÉÄÜΪµÈ±ßÈý½ÇÐΣ®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâÁйØÓÚa£¬b£¬cµÄ·½³Ì×飬Çó½âµÃµ½a£¬bµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©Çó³öPA£¬PB£¬Ö¤Ã÷|PA|¡Ù|PB|£¬¼´¿ÉÖ¤Ã÷£º¡÷PAB²»¿ÉÄÜΪµÈ±ßÈý½ÇÐΣ®

½â´ð £¨I£©½â£ºÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}{\frac{9}{4{a}^{2}}+\frac{6}{4{b}^{2}}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ${a}^{2}=\frac{9}{2}£¬{b}^{2}=3$£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{2{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$£»
£¨II£©Ö¤Ã÷£ºÖ¤Ã÷£ºA£¨x1£¬y1£©£¬Ôò$2{{x}_{1}}^{2}+3{{y}_{1}}^{2}=9$£¬ÇÒx1¡Ê[-$\frac{3\sqrt{2}}{2}$£¬$\frac{3\sqrt{2}}{2}$]£¬
|PA|=$\sqrt{£¨{x}_{1}-1£©^{2}+{y}_{1}2}$=$\sqrt{£¨{x}_{1}-1£©^{2}+3-\frac{2}{3}{{x}_{1}}^{2}}$=$\sqrt{\frac{1}{3}£¨{x}_{1}-3£©^{2}+1}$£¬
B£¨x2£¬y2£©£¬Í¬Àí¿ÉµÃ|PB|=$\sqrt{\frac{1}{3}£¨{x}_{2}-3£©^{2}+1}$£¬ÇÒx2¡Ê[-$\frac{3\sqrt{2}}{2}$£¬$\frac{3\sqrt{2}}{2}$]£®
y=$\frac{1}{3}£¨x-3£©^{2}+1$ÔÚ[-$\frac{3\sqrt{2}}{2}$£¬$\frac{3\sqrt{2}}{2}$]Éϵ¥µ÷£¬
¡àÓÐx1=x2?|PA|=|PB|£¬
¡ßx1¡Ùx2£¬¡à|PA|¡Ù|PB|£¬
¡à¡÷PAB²»¿ÉÄÜΪµÈ±ßÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éÁ½µã¼ä¾àÀ빫ʽµÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=x-alnx-1£¨a¡ÊR£©
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±x¡Ý2ʱ£¬f£¨x£©£¾0ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=£¨ex-1-1£©£¨x-1£©£¬Ôò£¨¡¡¡¡£©
A£®µ±x£¼0£¬Óм«´óֵΪ2-$\frac{4}{e}$B£®µ±x£¼0£¬Óм«Ð¡ÖµÎª2-$\frac{4}{e}$
C£®µ±x£¾0£¬Óм«´óֵΪ0D£®µ±x£¾0£¬Óм«Ð¡ÖµÎª0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a1=1£¬ÇÒ¶ÔÈÎÒâÕýÕûÊýn£¬µã£¨an+1£¬Sn£©¶¼ÔÚÖ±Ïß2x+y-2=0ÉÏ£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôbn=nan2£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬ÇóÖ¤£ºTn£¼$\frac{16}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÅ×ÎïÏßCÓëË«ÇúÏßx2-y2=1ÓÐÏàͬµÄ½¹µã£¬ÇÒ¶¥µãÔÚÔ­µã£¬ÔòÅ×ÎïÏßCµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®y2=¡À2$\sqrt{2}$xB£®y2=¡À2xC£®y2=¡À4xD£®y2=¡À4$\sqrt{2}$x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚµ×ÃæÊÇÕýÈý½ÇÐεÄÈýÀâ׶P-ABCÖУ¬DΪPCµÄÖе㣬PA=AB=1£¬PB=PC=$\sqrt{2}$£®
£¨¢ñ£©ÇóÖ¤£ºPA¡ÍƽÃæABC£»
£¨¢ò£©ÇóBDÓëƽÃæABCËù³É½ÇµÄ´óС£»
£¨¢ó£©Çó¶þÃæ½ÇD-AB-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÊµÊýx£¬yÂú×ã$\left\{\begin{array}{l}x-y+1¡Ý0\\ x¡Ü1\\ y¡Ý-1\end{array}\right.$£¬Èôm=2x-y£¬ÔòmµÄ×îСֵΪ-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÉèOΪ×ø±êÔ­µã£¬Å×ÎïÏßy2=4xµÄ½¹µãΪF£¬PΪÅ×ÎïÏßÉÏÒ»µã£®Èô|PF|=3£¬Ôò¡÷OPFµÄÃæ»ýΪ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ä³¹«Ë¾ÃÅÇ°ÓÐÒ»ÅÅ9¸ö³µÎ»µÄÍ£³µ³¡£¬´Ó×óÍùÓÒÊýµÚÈý¸ö£¬µÚÆ߸ö³µÎ»·Ö±ðÍ£×ÅA³µºÍB³µ£¬Í¬Ê±½øÀ´C£¬DÁ½³µ£¬ÔÚC£¬D²»ÏàÁÚµÄÌõ¼þÏ£¬CºÍDÖÁÉÙÓÐÒ»Á¾ÓëAºÍB³µÏàÁڵĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{10}{17}$B£®$\frac{14}{17}$C£®$\frac{9}{16}$D£®$\frac{7}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸