精英家教网 > 高中数学 > 题目详情
19.函数f(x)=2x3+x,实数m满足f(m2-2m)+f(m-6)<0,则m的取值范围是(-2,3).

分析 根据题意,对函数f(x)=2x3+x求导可得其导数f′(x)=6x2+1>0,分析可得函数f(x)为增函数,进而由f(-x)=-2x3-x=-f(x)分析可得,f(x)为奇函数;结合函数的奇偶性与单调性,可以将f(m2-2m)+f(m-6)<0,转化为m2-2m<6-m,解可得m的取值范围,即可得答案.

解答 解:根据题意,对于函数f(x)=2x3+x,其导数f′(x)=6x2+1>0,则函数f(x)为增函数,
又由f(-x)=-2x3-x=-f(x),则函数f(x)为奇函数,
若f(m2-2m)+f(m-6)<0,
则有f(m2-2m)<-f(m-6),
即f(m2-2m)<f(6-m),
又由函数f(x)为增函数,
则有m2-2m<6-m,
解可得:-2<m<3,
即m的取值范围是(-2,3);
故答案是:(-2,3).

点评 本题考查函数的奇偶性与单调性的综合应用,关键是转化思路,分析函数f(x)的奇偶性与单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:AD⊥平面PQB;
(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=3MC,求三棱锥P-QBM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.幂函数y=f(x)的图象经过点(4,2),则$f({\frac{1}{4}})$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2px(p>0),过焦点F,且倾斜角为60°的直线与抛物线交于A,B两点,若|AF|=6,则|BF|=2或18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆O:x2+y2=1,点M(x0,y0)是直线x-y+2=0上一点,若圆O上存在一点N,使得$∠NMO=\frac{π}{6}$,则y0的取值范围是[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,设水池底面一边的长度为xm
(1)若水池的总造价为W元,用含x的式子表示W.
(2)怎样设计水池能使总造价最低,最低总造价W是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.O为坐标原点,F为抛物线C:y2=4x的焦点,过F的直线交C于A,B且$\overrightarrow{FA}$=2$\overrightarrow{BF}$,则△OAB的面积为(  )
A.4B.$\sqrt{2}$C.$\frac{3\sqrt{2}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法错误的是(  )
A.在△ABC中,若A>B,则cosA<cosB
B.若b2=ac,则a,c的等比中项为b
C.若命题p与p∧q为真,则q一定为真
D.若p:?x∈(0,+∞),lnx<x-1,则¬p:?x∈(0,+∞),lnx≥x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={x^{-{k^2}+k+2}}$(k∈Z)在(0,+∞)上为增函数.
(1)求k值,并写出相应的f(x)的解析式;
(2)对于(1)中得到的函数f(x),试判断是否存在正实数m,使得函数g(x)=1-mf(x)+(2m-1)x在区间[-1,2]上的值域为$[-4,\frac{17}{8}]$?若存在,求出m值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案