精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)求的最小值

(2)记的最小值为,已知函数,若对于任意的,恒有成立,求实数的取值范围.

【答案】(1);(2).

【解析】

试题分析:(1)求出函数的定义域,并利用导数研究其在定义域上的单调性,找到最小值点即可求得最小值;(2),把分子设为新函数,并用导数研究其单调性,可知上单调递增,由于,且当时,,所以存在,使,且上单调递减,在上单调递增,所以必有,据此求得,分类参数即可求得参数的范围.

试题解析:(1)由已知得..........1分

,得;令,得

所以的单调减区间为,单调增区间为...................3分

从而................4分

(2)由(1)中................... 5分

所以.............................6分

,则...................7分

所以上单调递增,

因为,且当时,

所以存在,使,且上单调递减,在上单调递增......8分

因为,所以,即,因为对于任意的,恒有成立,

所以............9分

所以,即,亦即,所以..................... 10分

因为,所以

,所以,从而

所以,故.............................12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N。

(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);

(2)证明:直线MN∥平面BDH;

(3)过点M,N,H的平面将正方体分割为两部分,求这两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知椭圆中心在坐标原点,长轴在上,分别在其左、右焦点,椭圆上任意一点,且最大值为1,最小

(1)求椭圆方程;

(2)设椭圆右顶点,直线与椭圆交于两点的任意一条直线,若证明直线定点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的最小正周期;

(2)若函数对任意,有,求函数在[﹣]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)若求曲线处的切线方程

(2)若无零点求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题实数满足 ;命题实数满足.

(1)当时,若“”为真,求实数的取值范围;

(2)若“非”是“非”的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数 的极值;

(2)若内为单调增函数,求实数的取值范围;

(3)对于,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极点与直角坐标系的原点重合,极轴与轴的正半轴重合,圆的极坐标方程是,直线的参数方程是为参数).

1)若为直线轴的交点, 是圆上一动点,求的最大值;

2)若直线被圆截得的弦长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,其中,曲线在点处的切线与轴相交于点.

(1)确定的值;

(2)求函数的单调区间与极值.

查看答案和解析>>

同步练习册答案