精英家教网 > 高中数学 > 题目详情

已知
(1)求的值;
(2)若是第三象限的角,化简三角式,并求值.

(1);(2).

解析试题分析:(1)利用商数关系及题设变形整理即得的值;
(2)注意既是一个无理式,又是一个分式,那么化简时既要考虑通分,又要考虑化为有理式.考虑通分,显然将两个式子的分母的积作为公分母,这样一来,被开方式又是完全平方式,即可以开方去掉根号,从将该三角式化简.
试题解析:(1)∵   ∴              2分
解之得                               4分
(2)∵是第三象限的角
=     6分
=
==                         10分
由第(1)问可知:原式=                     12分
考点:三角函数同角关系式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设P是⊙O:上的一点,以轴的非负半轴为始边、OP为终边的角记为,又向量。且.
(1)求的单调减区间;
(2)若关于的方程内有两个不同的解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位有三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为.假定四点在同一平面内.
(Ⅰ)求的大小;
(Ⅱ)求点到直线的距

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 ().
(1)求函数的最小正周期;
(2)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 x∈R且,
(Ⅰ)求的最小正周期;
(Ⅱ)函数f(x)的图象经过怎样的平移才能使所得图象对应的函数成为偶函数?(列举出一种方法即可).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的图象与直线的相邻两个交点之间的距离为
(Ⅰ)求的值;
(Ⅱ)求函数上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,是三个内角的对边,关于的不等式
的解集是空集.
(Ⅰ)求角的最大值;
(Ⅱ)若的面积,求当角取最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,的对边分别为成等差数列.
(1)求B的值;
(2)求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面直角坐标系上的三点为坐标原点,向量与向量共线.
(1)求的值;
(2)求的值.

查看答案和解析>>

同步练习册答案