精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,求曲线在点处的切线方程;

(2)当时,若曲线在直线的上方,求实数的取值范围.

【答案】(1);(2)

【解析】

(1)根据题意,求出函数的导数,由导数的几何意义可得切线的斜率,求出切点的坐标,由直线的点斜式方程分析可得答案;(2)根据题意,原问题可以转化为恒成立,设,求出的导数,由函数的导数与函数单调性的关系分析可得其最大值,分析可得答案.

(1)当时,,其导数

又因为

所以曲线y=fx)在点(0f0))处的切线方程为

2)根据题意,当时,

“曲线y=fx)在直线的上方”等价于“恒成立”,

又由x0,则

则原问题等价于恒成立;

,则

又由,则,则函数在区间上递减,

又由,则有

恒成立,必有

的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车忽如一夜春风来,遍布了各级城市的大街小巷,为了解我市的市民对共享单车的满意度,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了50人进行分析.若得分低于60分,说明不满意,若得分不低于60分,说明满意,调查满意度得分情况结果用茎叶图表示如图1

(Ⅰ)根据茎叶图找出40岁以上网友中满意度得分的众数和中位数;

(Ⅱ)根据茎叶图完成下面列联表,并根据以上数据,判断是否有的把握认为满意度与年龄有关;

满意

不满意

合计

40岁以下

40岁以上

合计

(Ⅲ)先采用分层抽样的方法从40岁及以下的网友中选取7人,再从这7人中随机选出2人,将频率视为概率,求选出的2人中至少有1人是不满意的概率.

参考格式:,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在各项均为正数的等比数列{an}中,,且a4+a5=6a3

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设数列{log2an}的前n项和为Sn,求Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差和患感冒的小朋友人数(/人)的数据如下:

温差

患感冒人数

8

11

14

20

23

26

其中.

(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合的关系;

(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)

参考数据:.参考公式:相关系数:,回归直线方程是 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有学生500人,学校为了解学生的课外阅读时间,从中随机抽取了50名学生,获得了他们某一个月课外阅读时间的数据(单位:小时),将数据分为5组:[1012),[1214),[1416),[1618),[1820],整理得到如图所示的频率分布直方图.

1)求频率分布直方图中的x的值;

2)试估计该校所有学生中,课外阅读时间不小于16小时的学生人数;

3)已知课外阅读时间在[1012)的样本学生中有3名女生,现从阅读时间在[1012)的样本学生中随机抽取3人,记X为抽到女生的人数,求X的分布列与数学期望EX).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对给定的dN*,记由数列构成的集合

1)若数列{an}∈Ω(2),写出a3的所有可能取值;

2)对于集合Ω(d),若d≥2.求证:存在整数k,使得对Ω(d)中的任意数列{an},整数k不是数列{an}中的项;

3)已知数列{an}{bn}∈Ω(d),记{an}{bn}的前n项和分别为AnBn.若|an+1|≤|bn+1|,求证:AnBn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线的两个焦点, 在双曲线上。已知的三边长成等差数列,且,则该双曲线的离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数在区间内各有一个极值点.

I)求的最大值;

II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式.

查看答案和解析>>

同步练习册答案