精英家教网 > 高中数学 > 题目详情
15.经过点M(-m,3),N(5,-m)的直线的斜率为1,则m=-4.

分析 直接由两点坐标求斜率公式得到关于m的等式,则m可求.

解答 解:∵M(-m,3),N(5,-m),
∴${k}_{MN}=\frac{-m-3}{5+m}=-\frac{m+3}{m+5}=1$,
解得:m=-4.
故答案为:-4.

点评 本题考查直线的斜率,训练了由直线上两点的坐标求直线的斜率,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.对任意非零实数a,b,定义a?b的算法原理如程序框图所示.设a为函数y=x2-2x+3(x∈R)的最小值,b为抛物线y2=8x的焦点到准线的距离,则计算机执行该运算后输出结果是(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{7}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义:若对定义域D内的任意两个x1,x2(x1≠x2),均有|f(x1)-f(x2)|<|x1-x2|成立,则称函数y=f(x)是D上的“平缓函数”.则以下说法正确的有(  )
①f(x)=-lnx+x为(0,+∞)上的“平缓函数”
②g(x)=sinx为R上的“平缓函数”
③h(x)=x2-x是为R上的“平缓函数”
④已知函数y=k(x)为R上的“平缓函数”,若数列{an}对?n∈N*总有|xn+1-xn|≤$\frac{1}{(2n+1)^{2}}$,则k(xn+1)-k(x1)<$\frac{1}{4}$.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式组$\left\{\begin{array}{l}{{x}^{2}-1<0}\\{{x}^{2}-3x>0}\end{array}\right.$的解集是(  )
A.{x|-1<x<1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)求出△ABC与△A′B′C′的位似比;
(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于3:2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下图程序中,当输入的a,b是两个正整数,且a>b时,程序的功能是输出a,b最大公约数..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知幂函数f(x)的图象经过点($\sqrt{3}$,3),则f(2)的值是(  )
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.平面内到两定点F1、F2的距离之比等于常数m(m>0且m≠1)的点的轨迹称为阿波罗尼斯圆,已知曲线C是平面内到两定点F1(-1,0),F2(1,0)距离之比等于常数m(m>0,m≠1)的点的轨迹,下面选项正确的是(  )
A.曲线C关于坐标原点对称B.曲线C关于y轴对称
C.曲线C关于x轴对称D.曲线C过坐标原点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知E、F、G、H依次为空间四边形ABCD的边AB、BC、CD、DA上的点,且直线EF交直线HG于点P,则点P的位置是必处在(  )的上面.
A.BDB.ADC.ACD.平面BCD之内

查看答案和解析>>

同步练习册答案