精英家教网 > 高中数学 > 题目详情

(2006北京朝阳模拟)已知函数1m2

(1)f(x)在区间[11]上的最大值为1,最小值为-2,求mn的值;

(2)(1)条件下,求经过点P21)且与曲线f(x)相切的直线l的方程;

(3)设函数f(x)的导函数为g(x),函数,试判断函数F(x)的极值点个数,并求出相应实数m的范围.

答案:略
解析:

解析:(1)

∴由,得

1m2

∴当时,f(x)递增;当时,f(x)递增减.

f(x)在区间[11]上的最大值为f(0)=n,∴n=1

,∴f(1)f(1)

由题意得f(1)=2,即,得.故n=1为所求.

(2)(1)

易知点P(21)在曲线f(x)上.

,∴当切点为P(21)时,切线l的斜率

4xy7=0

当点P不是切点时,设切点为切线l的斜率

l的方程为

又点P(21)l上,∴

,即

.∴切线l的方程为y=1

故所求切线l的方程为4xy7=0y=1(或者:由(1)知点A(01)为极大值点,所以曲线f(x)的点A处的切线为y=1,恰好经过点P(21),符合题意.)

(3)由已知得

,二次函数的判别式为,整理,得

1m2

∴当时,,此时,函数F(x)为单调递增,极值点个数为0;当时,Δ>0,此时方程有两个相等的实数根,根据极值点的定义,可知函数F(x)有两个极值点.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:013

(2006北京朝阳模拟)下列函数中,最小正周期为π,且图象关于直线对称的是

[  ]

A

B

C

D

查看答案和解析>>

科目:高中数学 来源: 题型:013

(2006北京朝阳模拟)将直线绕原点按顺时针方向旋转30°,所得直线与圆的位置关系是

[  ]

A.直线与圆相离

B.直线与圆相交但不过圆心

C.直线与圆相切

D.直线过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:044

(2006北京朝阳模拟)如图所示,已知圆,设M为圆Cx轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好落在y轴上.

(1)r=2时,求满足条件的P点的坐标;

(2)r(1,+∞)时,求点N的轨迹G的方程;

(3)过点P(02)的直线l(2)中轨迹G相交于两个不同的点EF,若,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:013

(2006北京朝阳模拟)如下图,正方体中,EF分别是棱BC的中点,则直线EF与直线所成角的大小是

[  ]

A45°

B60°

C75°

D90°

查看答案和解析>>

同步练习册答案