精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2 . (Ⅰ)若b+c=5,求b,c的值;
(Ⅱ)若 ,求△ABC面积的最大值.

【答案】解:(Ⅰ)∵ , ∴

∵△ABC不是直角三角形,
∴bc=4,
又∵b+c=5,
∴解得
(Ⅱ)∵ ,由余弦定理可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,

,所以
∴△ABC面积的最大值是 ,当 时取到
【解析】(Ⅰ)由已知利用余弦定理化简已知等式可得 ,又△ABC不是直角三角形,解得bc=4,又b+c=5,联立即可解得b,c的值.(Ⅱ)由余弦定理,基本不等式可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,解得 ,可求 ,利用三角形面积公式即可得解三角形面积的最大值.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·湖北)设函数的定义域均为,且是奇函数,是偶函数,,其中e为自然对数的底数.
(Ⅰ)求的解析式,并证明:当时,
(Ⅱ)设,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)记x为的从小到大的第n()个极植点,证明:
(1)数列的等比数列
(2)若则对一切恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形 为菱形,四边形 为平行四边形,设 相交于点

(1)证明:平面 平面
(2)若 与平面 所成角为60°,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( ) (1.)已知等比数列{an},则“数列{an}单调递增”是“数列{an}的公比q>1”的充分不必要条件;
(2.)二项式 的展开式按一定次序排列,则无理项互不相邻的概率是
(3.)已知 ,则
(4.)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为40.
A.(1)(2)
B.(2)(3)
C.(1)(3)
D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,以x轴的正半轴为极轴建立极坐标系.设曲线C的参数方程为 (α是参数),直线l的极坐标方程为ρcos(θ+ )=2
(1)求直线l的直角坐标方程和曲线C的普通方程;
(2)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如图表:
(1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下: ①80岁及以上长者每人每月发放生活补贴200元;
②80岁以下老人每人每月发放生活补贴120元;
③不能自理的老人每人每月额外发放生活补贴100元.试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的最小正周期为4π,则(
A.函数f(x)的图象关于原点对称
B.函数f(x)的图象关于直线 对称
C.函数f(x)图象上的所有点向右平移 个单位长度后,所得的图象关于原点对称
D.函数f(x)在区间(0,π)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)lnx﹣(x﹣a)2(a∈R). (Ⅰ)若f(x)在(0,+∞)上单调递减,求a的取值范围;
(Ⅱ)若f(x)有两个极值点x1 , x2 , 求证:x1+x2

查看答案和解析>>

同步练习册答案