精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论的单调性;

2)对任意,都有恒成立,求m的最大值.

【答案】1)答案见解析(24

【解析】

(1)求得函数的导数,分类讨论,即可求得函数的单调区间,得到答案;

(2),对任意,都有恒成立,转化为函数恒成立,利用导数求得函数的单调性,即可求解.

(1)由题意,函数的定义域为,且

①当,即时,恒成立,上单调递增;

,即时,令

②当时,,据此可得:

时,单调递增,

时,单调递减,

时,单调递增,

③当时,,据此可得:

时,单调递减,

时,单调递增,

综上,当时,函数上单调递增;当时,在区间上单调递增,在区间上单调递减;当时,在区间上单调递增,在区间上单调递减;

2)因为,所以

,对任意,都有恒成立,

恒成立,

由(1)知上单调递减;在上单调递增;

,则

,∴

,所以,所以的最大值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数使得,那么称的线性函数.

1)下面给出两组函数,判断是否分别为的线性函数?并说明理由;

第一组:

第二组:

2)设,线性函数为.若等式上有解,求实数的取值范围;

3)设,取.线性函数图像的最低点为.若对于任意正实数.试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知{an}是等差数列,其前n项和Snn22n+b1{bn}是等比数列,其前n项和Tn,则数列{ bn +an}的前5项和为(  )

A.37B.-27C.77D.46

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=[x2﹣(a+4x+3a+4]ex

1)讨论函数fx)的单调性;

2)求证不等式(x36x2+10xex10lnx+1)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的值域为A.

(1)的为偶函数时,求的值;

(2) , A上是单调递增函数,求的取值范围;

(3)时,(其中),若,且函数的图象关于点对称,在处取 得最小值,试探讨应该满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,平面,底面为菱形,且的中点.

1)证明:平面

2)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天干地支纪年法,源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年,那么到改革开放100年时,即2078年为________

查看答案和解析>>

同步练习册答案