精英家教网 > 高中数学 > 题目详情
17.已知a>0,且a≠1,f(logax)=$\frac{a}{{a}^{2}-1}$(x-$\frac{1}{x}$).求f(x)的解析式.

分析 利用换元法求解函数的解析式即可.

解答 解:令logax=t,则x=at,f(logax)=$\frac{a}{{a}^{2}-1}$(x-$\frac{1}{x}$).
可得f(t)=$\frac{a}{{a}^{2}-1}$(at-$\frac{1}{{a}^{t}}$).
f(x)的解析式:f(x)=$\frac{a}{{a}^{2}-1}$(ax-$\frac{1}{{a}^{x}}$).a>0,且a≠1.

点评 本题考查函数的解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知命题p:椭圆离心率越大,椭圆越扁;命题q:双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一点P到左焦点距离为7,则P到右焦点距离为1或13.则下列命题中为真命题的是(  )
A.(?p)∨qB.p∧qC.(?p)∧(?q)D.(?p)∨(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-2x${\;}^{\frac{1}{2}}$
(1)求f(x)的定义域
(2)证明f(x)在定义域内是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各题:
(1)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$
(2)lg25+lg2×lg50+lg22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{si{n}^{4}x+co{s}^{4}x}{sin(\frac{π}{2}+x)sin(\frac{π}{2}-x)}$.
(1)判断函数的奇偶性;
(2)若f(a)=$\frac{5}{2}$,且a∈(0,$\frac{π}{2}$),求a得值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线.已知命题p:向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面;命题q:存在两个非零常数λ,μ,使c=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$.则p是q的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知an=logn(n+1),化简$\frac{1}{lo{g}_{{a}_{2}}10}$+$\frac{1}{lo{g}_{{a}_{3}}10}$+…+$\frac{1}{lo{g}_{{a}_{127}}10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a,b.c都是实数,“a+b+c=0”是“x=1是方程ax2+bx+c=0的一个根”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等式$sin(θ+\frac{π}{6})=1-{log_{\frac{1}{2}}}x$,则x的取值范围是(  )
A.[1,4]B.$[{\frac{1}{4},1}]$C.[2,4]D.$[{\frac{1}{4},4}]$

查看答案和解析>>

同步练习册答案