精英家教网 > 高中数学 > 题目详情
已知二面角α-AB-β为120°,AC?α,BD?β,且AC⊥AB,BD⊥AB,AB=AC=BD=a,则CD的长为______.
由题意,作出如图的图象,在平面β中可过A作AB的垂线,过D作BD的垂线,两者交于E连接CE,
由作图知,四边形ABDE是矩形,故有DE=AB=a,AE=BD=a,AE⊥AB
又AC⊥AB,易得AB⊥面ACE,即有CE⊥AB,进而得CE⊥DE
有二面角的平面角的定义知,∠CAE=120°
在△CAE中,由余弦定义可得CE2=a2+a2-2×a2×(-
1
2
)=3a2,故CE=
3
a
在直角三角形CED中,由勾股定理得CD2=DE2+CE2=a2+3a2=4a2
可得CD的长为2a
故答案为:2a.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在五面体P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,PB=
15
,PD=
3

(1)求证:BD⊥平面PAD;
(2)若PD与底面ABCD成60°的角,试求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在一个60°的二面角的棱上,有两个点A、B,AC、BD分别是在这个二面角的两个半平面内垂直于AB的线段,且AB=4cm,AC=6cm,BD=8cm,则CD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,二面角α-l-β的棱l上有两点B、C,AB⊥l,CD⊥l,且AB⊆α,CD⊆β,若AB=CD=BC=2,AD=4,则此二面角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且BG=
1
4
BB′
,求证:FG平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC平面DMF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于平面M与平面N,有下列条件:①M,N都垂直于平面Q;②M、N都平行于平面Q;③M内不共线的三点到N的距离相等;④l,m为两条平行直线,且l∥M,m∥N;⑤l,m是异面直线,且l∥M,m∥M;l∥N,m∥N,则可判定平面M与平面N平行的条件是________(填正确结论的序号).

查看答案和解析>>

同步练习册答案