【题目】设函数,是函数的导数.
(1)若,证明在区间上没有零点;
(2)在上恒成立,求的取值范围.
【答案】(1)证明见解析(2)
【解析】
(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知,
函数在上单调递增,在上单调递减,而,,可知在区间上恒成立,即在区间上没有零点;
(2)由题意可将转化为,构造函数,
利用导数讨论研究其在上的单调性,由,即可求出的取值范围.
(1)若,则,,
设,则,,
,故函数是奇函数.
当时,,,这时,
又函数是奇函数,所以当时,.
综上,当时,函数单调递增;当时,函数单调递减.
又,,
故在区间上恒成立,所以在区间上没有零点.
(2),由,所以恒成立,
若,则,设,
.
故当时,,又,所以当时,,满足题意;
当时,有,与条件矛盾,舍去;
当时,令,则,
又,故在区间上有无穷多个零点,
设最小的零点为,
则当时,,因此在上单调递增.
,所以.
于是,当时,,得,与条件矛盾.
故的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.
(1)求的方程;
(2)若直线与曲线交于两点,问是否在轴上存在一点,使得当变动时总有?若存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是抛物线上一点,点为抛物线的焦点,.
(1)求直线的方程;
(2)若直线与抛物线的另一个交点为,曲线在点与点处的切线分别为,直线相交于点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗、、.经过引种实验发现,引种树苗的自然成活率为,引种树苗、的自然成活率均为.
(1)任取树苗、、各一棵,估计自然成活的棵数为,求的分布列及其数学期望;
(2)将(1)中的数学期望取得最大值时的值作为种树苗自然成活的概率.该农户决定引种棵种树苗,引种后没有自然成活的树苗有的树苗可经过人工栽培技术处理,处理后成活的概率为,其余的树苗不能成活.
①求一棵种树苗最终成活的概率;
②若每棵树苗引种最终成活可获利元,不成活的每棵亏损元,该农户为了获利期望不低于万元,问至少要引种种树苗多少棵?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥中, 平面, ,点分别为的中点,设直线与平面交于点.
(1)已知平面平面,求证: .
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着时代的发展和社会的进步,“农村淘宝”发展十分迅速,促进“农产品进城”和“消费品下乡”,“农产品进城”很好地解决了农产品与市场的对接问题,使农民收入逐步提高,生活水平得到改善,农村从事网店经营的人收入逐步提高.西凤脐橙是四川省南充市的特产,因果实呈椭圆形、色泽橙红、果面光滑、无核、果肉脆嫩化渣、汁多味浓,深受人们的喜爱.为此小王开网店销售西凤脐橙,每月月初购进西凤脐橙,每售出1吨西凤脐橙获利润800元,未售出的西凤脐橙,每1吨亏损500元.经市场调研,根据以往的销售统计,得到一个月内西凤脐橙市场的需求量的频率分布直方图如图所示.小王为下一个月购进了100吨西凤脐橙,以x(单位:吨)表示下一个月内市场的需求量,y(单位:元)表示下一个月内经销西凤脐橙的销售利润.
(1)将y表示为x的函数;
(2)根据频率分布直方图估计小王的网店下一个月销售利润y不少于67000元的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求直线与曲线公共点的极坐标;
(2)设过点的直线交曲线于,两点,且的中点为,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com