精英家教网 > 高中数学 > 题目详情

【题目】如图,已知三棱柱的侧棱与底面垂直,M的中点,的中点,点上,且满足.

1)证明:.

2)当取何值时,直线与平面所成的角最大?并求该角最大值的正切值.

3)若平面与平面所成的二面角为,试确定P点的位置.

【答案】1)见解析;(2)见解析;(3)见解析

【解析】

1)以ABAC分别为轴,建立空间直角坐标系,求出各点的坐标及对应向量的坐标,易判断,即;(2)设出平面ABC的一个法向量,我们易表达出,然后利用正弦函数的单调性及正切函数的单调性的关系,求出满足条件的值,进而求出此时的正线值;(3)平面PMN与平面ABC所成的二面角为,则平面PMN与平面ABC法向量的夹角余弦值的绝对值为,代入向量夹角公式,可以构造一个关于的方程,解方程即可求出对应值,进而确定出满足条件的点P的位置.

1)证明:如图,以ABAC分别为轴,建立空间直角坐标系

从而

所以

2)平面ABC的一个法向量为

(※).

,当最大时,最大,无意义,除外,

由(※)式,当时,

3)平面ABC的一个法向量为

设平面PMN的一个法向量为

由(1)得

解得,令,得

∵平面PMN与平面ABC所成的二面角为

解得

故点P的延长线上,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为4,焦距为

求椭圆的方程;

过动点的直线交轴与点,交于点 (在第一象限),且是线段的中点.过点轴的垂线交于另一点,延长于点.

设直线的斜率分别为,证明为定值;

求直线的斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果你留心使会发现,汽车前灯后的反射镜呈抛物线的形状,把抛物线沿它的对称轴旋转一周,就会形成一个抛物面.这种抛物面形状,正是我们熟悉的汽车前灯的反射镜形状,这种形状使车灯既能够发出明亮的、照射很远的平行光束,又能发出较暗的,照射近距离的光线.我们都知道常规的前照灯主要是由灯泡、反射镜和透镜三部分组成,明亮的光束,是由位于抛物面形状反射镜焦点的光源射出的,灯泡位于抛物面的焦点上,灯泡发出的光经抛物面反射镜反射形成平行光束,再经过配光镜的散射、偏转作用,以达到照亮路面的效果,这样的灯光我们通常称为远光灯:而较暗的光线,不是由反射镜焦点的光源射出的,光线的行进与抛物线的对称轴不平行,光线只能向上和向下照射,所以照射距离并不远,如果把向上射出的光线遮住.车灯就只能发出向下的、射的很近的光线了.请用数学的语言归纳表达远光灯的照明原理,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了选拔学生参加全市中学生物理竞赛,学校先从高三年级选取60名同学进行竞赛预选赛,将参加预选赛的学生成绩(单位:分)按范围分组,得到的频率分布直方图如图:

(1)计算这次预选赛的平均成绩(同一组中的数据用该组区间的中点值作代表);

(2)若对得分在前的学生进行校内奖励,估计获奖分数线;

(3)若这60名学生中男女生比例为,成绩不低于60分评估为“成绩良好”,否则评估为“成绩一般”,试完成下面列联表,是否有的把握认为“成绩良好”与“性别”有关?

成绩良好

成绩一般

合计

男生

女生

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆.

(1)若过抛物线的焦点的直线与圆相切,求直线方程;

(2)在(1)的条件下,若直线交抛物线两点,轴上是否存在点使为坐标原点)?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中记载了有关特殊几何体的定义:阳马指底面为矩形,一侧棱垂直于底面的四棱锥,堑堵指底面是直角三角形,且侧棱垂直于底面的三棱柱.

1)某堑堵的三视图,如图1,网格中的每个小正方形的边长为1,求该堑堵的体积;

2)在堑堵中,如图2,若,当阳马的体积最大时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某人打算做一个正四棱锥形的金字塔模型,先用木料搭边框,再用其他材料填充,已知金字塔的每一条棱和边都相等.

(1)求证:直线AC垂直于直线SD

(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当,求证

(2)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的各项都不为零,其前n项和为,且满足,数列满足,其中t为正整数.

若不等式对任意都成立,求首项的取值范围;

若首项是正整数,则数列中的任意一项是否总可以表示为数列中的其他两项之积?若是,请给出一种表示方式;若不是,请说明理由.

查看答案和解析>>

同步练习册答案