精英家教网 > 高中数学 > 题目详情

计算:已知是方程的两根,求的值.

 

【答案】

【解析】因为是方程的两根,利用韦达定理可得,再要得两角和的正切公式可求出,

再借助代入求解即可.

是方程的两根,

………………………(4分)

………………………(7分)

.…………………(12分)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选择题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1).选修4-2:矩阵与变换
已知矩阵A=
1a
-1b
,A的一个特征值λ=2,其对应的特征向量是α1=
2
1

(Ⅰ)求矩阵A;
(Ⅱ)若向量β=
7
4
,计算A2β的值.

(2).选修4-4:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ
,点F1,F2为其左、右焦点,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R).求点F1,F2到直线l的距离之和.
(3).选修4-5:不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期期末考试数学理卷 题型:解答题

(本小题满分14分)

本题是选作题,考生只能选做其中两个小题.三个小题都作答的,以前两个小题计算得分。

①选修4-4《坐标系与参数方程》选做题(本小题满分7分)

已知曲线C的参数方程是为参数),且曲线C与直线=0相交于两点A、B求弦AB的长。

②选修4-2《矩阵与变换》选做题(本小题满分7分)

已知矩阵的一个特征值为,它对应的一个特征向量

(Ⅰ)求矩阵M;

(Ⅱ)点P(1, 1)经过矩阵M所对应的变换,得到点Q,求点Q的坐标。

③选修4-5《不等式选讲》选做题(本小题满分7分)

函数的图象恒过定点,若点在直线上,其中

,求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题有(1)、(2)、(3)三个选择题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1).选修4-2:矩阵与变换
已知矩阵A=
1a
-1b
,A的一个特征值λ=2,其对应的特征向量是α1=
2
1

(Ⅰ)求矩阵A;
(Ⅱ)若向量β=
7
4
,计算A2β的值.

(2).选修4-4:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ
,点F1,F2为其左、右焦点,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R).求点F1,F2到直线l的距离之和.
(3).选修4-5:不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市泉港二中高三(上)第11周周考数学试卷(理科)(解析版) 题型:解答题

本题有(1)、(2)、(3)三个选择题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1).选修4-2:矩阵与变换
已知矩阵,A的一个特征值λ=2,其对应的特征向量是
(Ⅰ)求矩阵A;
(Ⅱ)若向量,计算A2β的值.

(2).选修4-4:坐标系与参数方程
已知椭圆C的极坐标方程为,点F1,F2为其左、右焦点,直线l的参数方程为(t为参数,t∈R).求点F1,F2到直线l的距离之和.
(3).选修4-5:不等式选讲
已知x,y,z均为正数.求证:

查看答案和解析>>

同步练习册答案