精英家教网 > 高中数学 > 题目详情

已知函数f(x)=lnx+a(x+1).
(I)讨论函数f(x)的单调性;(II)求函数f(x)在[1,2]上的最大值.

解:(Ⅰ)
(1)a≥0时,函数f(x)在(0,+∞)单调递增;
(2)a<0时,函数f(x)在单调递增;单调递减.(5分)
(Ⅱ)(1)时,函数f(x)在[1,2]上单调递增,最大值为3a+ln2;
(2)a≤-1时,函数f(x)在[1,2]上单调递减,最大值为2a;
(3)时,函数f(x)在单调递增;单调递减,最大值为.(12分)
分析:(I)函数的定义域(0,+∞)分a≥0,a<0两种情况讨论f(x)在区间(0,+∞)上的单调性
(II)令f′(x)=0?,分①;②;③ 三种情况讨论函数在区间上的单调性,以确定函数的最大值.
点评:本题主要考查了导数的应用:利用导数求函数的单调区间及求函数在闭区间[a,b]上的最值是通过比较函数在(a,b)内所有极值与端点函数值f(a),f(b) 比较而得到.要注意分类讨论思想在解题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案