精英家教网 > 高中数学 > 题目详情
已知函数,给出下列关于f(x)的性质:
①f(x)是周期函数,3是它的一个周期;②f(x)是偶函数;③方程f(x)=cosx有有理根;④方程f[f(x)]=f(x)与方程f(x)=1的解集相同
正确的个数为( )
A.1个
B.2个
C.3个
D.4个
【答案】分析:本题综合的考查了函数的性质,我们可以根据周期函数、函数奇偶性结合方程思想,特殊值代入验证法,对四个结论逐一进行判断,最后得到结论.
解答:解:当T=3,则当x为有有理数时,x+3也为有理数,则f(x+3)=f(x);
则当x为有无理数时,x+3也为无理数,则f(x+3)=f(x);
故T为函数的周期,即f(x)是周期函数,3是它的一个周期,故①正确;
若x为有理数,则-x也为有理数,则f(-x)=f(x);
若x为无理数,则-x也为无理数,则f(-x)=f(x);
故f(x)是偶函数,故②正确
存在有理数0,使得f(x)=cosx=0成立
故方程f(x)=cosx有有理根,即③正确;
方程f[f(x)]=f(x)可等价变形为f(x)=1
故方程f[f(x)]=f(x)与方程f(x)=1的解集相同,故④正确
故选D
点评:要判断一个函数的奇偶性,我们需要经过两个步骤:①判断函数的定义域是否关于原点对称;②判断f(-x)与f(x)的值是相等还是相反.反之,当已知函数为奇函数或偶函数时,要注意此时函数的定义域一定关于原点对称,且f(-x)与f(x)的值是相反或相等.要判断一一个函数是否为周期函数,则要判断f(x+T)=f(X)是否恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

35、已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是
(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省孝感高中高三(上)9月调考数学试卷(理科)(解析版) 题型:填空题

已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是    

查看答案和解析>>

科目:高中数学 来源:2011年陕西省西安市西工大附中高考数学六模试卷(解析版) 题型:填空题

已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是    

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市高三(下)毕业班冲刺训练数学试卷2(理科)(解析版) 题型:解答题

已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是    

查看答案和解析>>

科目:高中数学 来源:2011年高三数学单元检测:函数(4)(解析版) 题型:解答题

已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是    

查看答案和解析>>

同步练习册答案