精英家教网 > 高中数学 > 题目详情
给出下列命题:
A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
B.已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为
π
2

C.底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
D.若P为双曲线x2-
y2
9
=1上的一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2 或6.
其中正确的命题是______(把所有正确的命题的选项都填上)
∵函数y=f(x-2)图象关于直线x=2对称的函数解析式为y=f[(4-x)-2]=f(2-x)
故A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称正确;
∵已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)的图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则函数的周期为π
故ω的值为2,又由函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,由诱导公式易得θ的值为
π
2
.故B正确;
若两侧面可以是等腰直角三角形,另一侧面是等腰三角形时,所得三棱锥不是正三棱锥故C错误;
由双曲线的定义,我们根据其标准方程易判断2a=2,故|PF2|=4,则|PF1|=2 或6,即D正确
故答案为:A、B、D
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数数学公式为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是________ (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:2011年四川省遂宁市高考数学二模试卷(理科)(解析版) 题型:解答题

设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是     (写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案