(本小题满分12分)
如图所示,△是正三角形,和都垂直于平面,且,,是的中点.
(1)求证:∥平面;
(2)求三棱锥的体积.
(1)只需证明∥;(2)。
解析试题分析:(1)设为的中点,连,则
∥且--------------2分
又 ∥且
∴∥且,即四边形为平行四边形.------------4分
∴∥ 又平面
∴∥平面---------------------------------------6分
注:若学生用面面平行的性质解答,即证平面∥平面,按相应步骤给分.
(2)∵
又平面,知
∴平面 由(1)知平面
∴--------------------------------------------------8分
又
∴--------------------12分
考点:线面垂直的性质定理;线面平行的判定定理;线面垂直的判定定理。
点评:立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行,等等。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知:如图,在四棱锥中,四边形为正方形,,且,为中点.
(1)证明://平面;
(2)证明:平面平面;
(3)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点.
(Ⅰ)求证:DA⊥平面PAC;
(Ⅱ)点G为线段PD的中点,证明CG∥平面PAF;
(Ⅲ)求三棱锥A—CDG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,,,是的中点,是中点.
(1)求证:∥面;
(2)求直线EF与直线所成角的正切值;
(3)设二面角的平面角为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中,,,是的中点.
(1)求证:平行平面;
(2)求二面角的余弦值;
(3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com