精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲

设函数.

(1)求解不等式的解集;

(2)若函数的定义域为R,求实数m的取值范围.

【答案】(1){x|x<3};(2)(﹣∞,﹣2)∪(2,+∞).

【解析】试题分析:(1)根据绝对值定义,将不等式转化为三个不等式组,分别求解集,最后求它们的并集,(2)先将条件转化为方程无解,再根据绝对值三角不等式确定函数值域,进而可得实数m的取值范围.

试题解析:(1)原不等式即为|x﹣2|﹣|x﹣4|<0,

x≤2,则2﹣x+x﹣4<0,符合题意,∴x≤2,

若2<x<4,则x﹣2+x﹣4<0,解得:x<3,∴2<x<3,

x≥4,则x﹣2﹣x+4<0,不合题意,

综上,原不等式的解集是{x|x<3};

(2)若函数gx 的定义域为R

mfx)=0恒不成立,

m=fx)在R无解,

|fx)|=||x﹣2|﹣|x﹣4||≤|x﹣2﹣(x﹣4)|=2,

当且仅当(x﹣2)(x﹣4)≤0时取“=”,

∴﹣2≤fx)≤2,

m的范围是(﹣∞,﹣2)∪(2,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】语文成绩服从正态分布,数学成绩的频率分布直方图如下:

)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)

)如果语文和数学两科都特别优秀的共有6人,从()中的这些同学中随机抽取3人,设三人中两科都特别优秀的有人,求的分布列和数学期望.

(附参考公式)若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为椭圆的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线轴交于,过点的直线与椭圆交于两不同点 ,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):

学生编号 题号

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;

题号

1

2

3

4

5

实测答对人数

实测难度

(Ⅱ)从编号为155人中随机抽取2人,求恰好有1人答对第5题的概率;

Ⅲ)定义统计量,其中为第题的实测难度, 为第题的预估难度.规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(A)在直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为 (为参数), 是曲线上的动点, 为线段的中点,设点的轨迹为曲线.

(1)求的坐标方程;

(2)若射线与曲线异于极点的交点为,与曲线异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了名观众进行调查,其中女性有.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于分钟的观众称“体育述”,已知“体育迷”中名女性.

(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性別有关?

非体育迷

体育迷

合计

合计

(2)将日均收看该体育项目不低于分钟的观众称为“超级体育迷”,已知“超级体育述”中有名女性,若从“超级体育述”中任意选取,求至少有名女性观众的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, 分别是角的对边,且,若 ,则的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的导函数.

(1)求的极值;

(2)证明:对任意实数,都有恒成立;

(3)若时恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案