精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为自然对数的底数),且曲线在点处的切线平行于轴.

(1)求的值;

(2)求函数的极值.

【答案】(1);(2)极小值为1;无极大值.

【解析】试题分析:(1)求出f(x)的导数,依题意,f′(1)=0,从而可求得a的值;

(2),分a0时a>0讨论,可知f(x)在(﹣∞,lna)上单调递减在(lna,+∞)上单调递增,从而可求其极值.

试题解析:

(Ⅰ)由,得.

又曲线在点处的切线平行于轴,

,即,解得.

(Ⅱ) ,

①当时, , 上的增函数,所以函数无极值.

②当时,令,得, .

,; ,.

所以上单调递减,在上单调递增,

处取得极小值,且极小值为,无极大值.

综上,当时,函数无极值;

, 处取得极小值,无极大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若函数存在两个极值点且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于点P

(1)证明:PF∥面ECD;
(2)求二面角B﹣EC﹣A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=sin(ωx+ )向右平移 个单位后,所得的图象与原函数图象关于x轴对称,则ω的最小正值为(
A.1
B.2
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,在x轴的上方作半径为1的圆Γ,与x轴相切于坐标原点O.平行于x轴的直线l1y轴交点的纵坐标为-1,Axy)是圆Γ外一动点,A与圆Γ上的点的最小距离比Al1的距离小1.

(Ⅰ)求动点A的轨迹方程;

(Ⅱ)设l2是圆Γ平行于x轴的切线,试探究在y轴上是否存在一定点B,使得以AB为直径的圆截直线l2所得的弦长不变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,命题;命题.

(1)为真命题,求的取值范围;

(2)为真命题,求的取值范围;

(3)为假命题,为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分)已知圆有以下性质:

过圆上一点的圆的切线方程是.

为圆外一点,过作圆的两条切线,切点分别为则直线的方程为.

若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即,且平分线段.

(1)类比上述有关结论,猜想过椭圆上一点的切线方程(不要求证明);

(2)过椭圆外一点作两直线,与椭圆相切于两点,求过两点的直线方程;

(3)若过椭圆外一点不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值,且平分线段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《城市规划管理意见》里面提出“新建住宅要推广街区制,原则上不再建设封闭住宅小区,已建成的封闭小区和单位大院要逐步打开”,这个消息在网上一石激起千层浪,各种说法不一而足.某网站为了解居民对“开放小区”认同与否,从岁的人群中随机抽取了人进行问卷调查,并且做出了各个年龄段的频率分布直方图(部分)如图所示,同时对人对这“开放小区”认同情况进行统计得到下表:

(Ⅰ)完成所给的频率分布直方图,并求的值;

(Ⅱ)如果从两个年龄段中的“认同”人群中,按分层抽样的方法抽取6人参与座谈会,然后从这6人中随机抽取2人作进一步调查,求这2人的年龄都在内的概率 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)如果s、t、r满足|s﹣r|≤|t﹣r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较 和ex1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

同步练习册答案